Skip to main content
Log in

Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Soil salinity is one of the major environmental stress factors limiting crops growth, development, and productivity worldwide. The aim of this study was to compare differences of salinity tolerance between diploid (cv. TY03209) and tetraploid (cv. TY03410) seedlings of sugar beet (Beta vulgaris L.) treated with various concentrations (0, 50, 100, 200, and 300 mM) of NaCl. Our results indicated that fresh weight (FW) and dry weight (DW) of shoot in tetraploid were remarkably higher than those in diploid when subjected to various concentrations of NaCl (except for FW under 200 mM). At 200 and 300 mM NaCl, tetraploid obviously accumulated less Na+ in its shoots and roots compared with diploid. However, there were no differences in K+ accumulation between tetraploid and diploid under salinity stress. Our results also showed tetraploid displayed a smaller Na+/K+ ratio and a stronger selective capacity for K+ over Na+ than diploid when exposed to high-salt stress (300 mM). Furthermore, it was observed that tetraploid possessed a bigger net K+ uptake rate and a smaller net Na+ uptake rate compared to diploid at high-salt condition. We also investigated the relative expression levels of six genes related to K+ and Na+ transport in roots of diploid and tetraploid by qRT-PCR method, and found that BvHKT1;1, BvNHX1, BvSKOR, and BvSOS1 were induced by additional 50 mM NaCl, and their transcript abundances in tetraploid were relatively higher than those in diploid. The expression level of BvAKT1 was down-regulated in tetraploid during 3–48 h of salt treatment, whilst basically remained unchanged in diploid. It was observed that the transcript abundance of BvHAK5 in diploid displayed the reduced trend with the prolonging of salt treatment time compared to tetraploid. In addition, soluble sugars contents were obviously higher in tetraploid than in diploid exposed to 100, 200, and 300 mM NaCl. Taken together, these results suggested that tetraploid exhibited more tolerant to salinity stress than diploid in sugar beet by accumulating less Na+ and more soluble sugars, and by maintaining lower Na+/K+ ratio and greater capacity of selective absorption for K+ over Na+. The results of this study provide insights into physiological and molecular consequences of polyploidization in sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AKT1:

Arabidopsis K+ transporter 1

ANOVA:

Analysis of variance

BT:

Before treatments

Ct:

Cycle threshold

DW:

Dry weight

FW:

Fresh weight

HAK5:

High-affinity K+ transporter 5

HKT1:

High-affinity K+ transporter 1

KT:

K+ transporter

KUP:

K+ uptake protein

RFW:

Root fresh weigh

NXH1:

Tonoplast Na+/H+ antiporter 1

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

SA:

Selective absorption for K+ over Na+

SE:

Standard error

SKOR:

Shaker-like K+ outward rectifying channel

SOS1:

Salt overly sensitive 1

ST:

Selective transport for K+ over Na+

TEA:

Tetraethylammonium

UV:

Ultra violet

XPCs:

Xylem parenchyma cells

References

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: The Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    PubMed  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotech 13:146–150

    CAS  PubMed  Google Scholar 

  • Ardie SW, Liu SK, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874

    CAS  PubMed  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189

    CAS  Google Scholar 

  • Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotech Rep 6:59–67

    Google Scholar 

  • Bao AK, Guo ZG, Zhang HF, Wang SM (2009) A procedure for assessing the salt tolerance of Lucerne (Medicago sativa L.) cultivar seedlings by combining agronomic and physiological indicators. New Zeal. J Agr Res 52:435–442

    CAS  Google Scholar 

  • Beyaz R, Alizadeh B, Gürel S, Özcan FS, Yildiz M (2013) Sugar beet (Beta vulgaris L.) growth at different ploidy levels. Caryologia 66:90–95

    Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494

    PubMed  Google Scholar 

  • Chao DY, Dilkes B, Luo H, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132

    CAS  PubMed  Google Scholar 

  • Chen SL, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124

    Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171:696–707

    CAS  PubMed  Google Scholar 

  • Dohm JC, Minoche AE, Holtgräwe D, Capellagutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    CAS  PubMed  Google Scholar 

  • Dong Y, Fan G, Zhao Z, Xu E, Deng M, Wang L, Niu S (2017) Transcriptome-wide profiling and expression analysis of two accessions of Paulownia australis under salt stress. Tree Genet Genomes 13:97

    Google Scholar 

  • Duan HR, Ma Q, Zhang JL, Hu J, Bao AK, Wei L, Wang Q, Luan S, Wang SM (2015) The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition. Plant Soil 395:173–187

    CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2010) Salinity tolerance in halophytes. New Phytol 179:945–963

    Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    CAS  PubMed  Google Scholar 

  • Gao HJ, Yang HY, Bai JP, Liang XY, Lou Y, Zhang JL, Niu SQ, Chen YL (2015) Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00787

    Article  PubMed  PubMed Central  Google Scholar 

  • Garciadeblás B, Senn ME, Baňuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    PubMed  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J, Sentenac H (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    CAS  PubMed  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81

    CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    PubMed  PubMed Central  Google Scholar 

  • Guo Q, Wang P, Ma Q, Zhang JL, Bao AK, Wang SM (2012) Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Funct Plant Biol 39:1047–1057

    CAS  Google Scholar 

  • Guo Q, Meng L, Mao PC, Tian XX (2015) Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiol Plant 37:1708

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiology, biochemical, and molecular characterization. Int J Genomics 70:1596

    Google Scholar 

  • Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JL, Uozumi N (2014) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Bitech 32:113–120

    Google Scholar 

  • He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mol Sci 19:469

    PubMed Central  Google Scholar 

  • Hossain MS, ElSayed AI, Moore M, Dietz KJ (2017) Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot 68:1283–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Ma Q, Kumar T, Duan HR, Zhang JL, Yuan HJ, Wang Q, Khan SA, Wang P, Wang SM (2016) ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regul 80:195–205

    CAS  Google Scholar 

  • Huang LT, Zhao LN, Gao LW, Véry AA, Sentenac H, Zhang YD (2018) Constitutive expression of CmSKOR, an outward K+ channel gene from melon, in Arabidopsis thaliana involved in saline tolerance. Plant Sci 274:492–502

    CAS  Google Scholar 

  • Kaddour R, Nasri N, M’rah S, Berthomieu P, Lachaâl M (2009) Comparative effect of potassium in K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. C R Biol 332:784–794

    CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23

    CAS  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal P (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    PubMed  PubMed Central  Google Scholar 

  • Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26:3387–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang A, Zhang WH (2017) Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Biol 17:141

    PubMed  PubMed Central  Google Scholar 

  • Li W, Xu G, Alli A, Yu L (2018) Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol 74:133–141

    CAS  PubMed  Google Scholar 

  • Liu K, Li L, Luan S (2006) Intracellular K+ sensing of SKOR, a shaker-type K+ channel from Arabidopsis. Plant J 46:260–268

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    CAS  Google Scholar 

  • Lu Y, Lei JQ, Zeng FJ, Zhang B, Liu GJ, Liu B, Li XY (2017) Effect of NaCl-induced changes in growth, photosynthetic characteristics, water status and enzymatic antioxidant system of Calligonum caput-medusae seedlings. Photosynthetica 55:96–106

    CAS  Google Scholar 

  • Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves the photosynthesis and water status in succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13

    CAS  PubMed  Google Scholar 

  • Ma Q, Li XY, Yuan HJ, Hu J, Wei L, Bao AK, Zhang JL, Wang SM (2014) ZxSOS1 is essential for long-distance transport and spatial distribution of Na+ and K+ in the xerophyte Zygophyllum xanthoxylum. Plant Soil 374:661–676

    CAS  Google Scholar 

  • Ma Q, Hu J, Zhou XR, Yuan HJ, Kumar T, Luan S, Wang SM (2017) ZxAKT1 is essential for K+ uptake and K+/Na+ homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. Plant J 90:48–60

    CAS  PubMed  Google Scholar 

  • Maathuis FJ, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    CAS  PubMed  Google Scholar 

  • Magaña C, Núñez-Sánchez N, Fernández-Cabanás VM, García P, Serrano A, Pérez-Marín D, Pemán JM, Alcalde E (2011) Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy. Bioresour Technol 102:9542–9549

    PubMed  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: Potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    PubMed  PubMed Central  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    PubMed  PubMed Central  Google Scholar 

  • Monteiro F, Frese L, Castro S, Duarte MC, Paulo OS, Loureiro J, Romeiras MM (2018) Genetic and genomic tools to assist sugar beet improvement: the value of the crop wild relatives. Front Plant Sci 9:74

    PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol Plant 3:326–333

    CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    CAS  PubMed  Google Scholar 

  • Pan YQ, Guo H, Wang SM, Zhao B, Zhang JL, Ma Q, Yin HJ, Bao AK (2016) The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Front Plant Sci 7:848

    PubMed  PubMed Central  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low potassium conditions. Plant Physiol 153:863–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radić S, Štefanić PP, Lepeduš H, Roje V, Pevalek-Kozlina B (2013) Salt tolerance of Centaurea ragusina L. is associated with efficient osmotic adjustment and increased antioxidative capacity. Environ Exp Bot 87:39–48

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    CAS  PubMed  Google Scholar 

  • Riddle NC, Jiang H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Bondada BR, Syvertsen JP, Grosser JW (1997) Leaf characteristics and net gas exchange of diploid and autotetraploid citrus. Ann Bot 79:153–160

    Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Google Scholar 

  • Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480

    CAS  PubMed  Google Scholar 

  • Ruiz M, Quiñones A, Martínez-Alcántara B, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Cuenca MS (2016) Effects of salinity on diploid (2x) and doubled diploid (4x) citrus macrophylla genotypes. Sci Hortic 207:33–40

    CAS  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    CAS  PubMed  Google Scholar 

  • Schachtman DP, Lagudah ES, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84:714–719

    CAS  PubMed  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    CAS  PubMed  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2002a) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002b) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Nahia KA, Złoch M, Tretyn A, Tyburski J (2016) Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima Plant Sci 243:56–70

    CAS  PubMed  Google Scholar 

  • Spettoli P, Cacco G, Ferrari G (1976) Comparative evaluation of the enzyme multiplicity in a diploid, a triploid and a tetraploid sugar beet variety. J Sci Food Agric 27:341–344

    CAS  PubMed  Google Scholar 

  • Stupar RM, Bhaskar P, Yandell B, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang J (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunarpi HT, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JL, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    CAS  PubMed  Google Scholar 

  • Tu Y, Jiang A, Gan L, Hossain M, Zhang JM, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y (2014) Genome duplication improves rice root resistance to salt stress. Rice 7:15

    PubMed  PubMed Central  Google Scholar 

  • Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496

    CAS  PubMed  Google Scholar 

  • Wang QL, Yu MD, Lu C, Wu CR, Jing CR (2011) Study on breeding and photosynthetic characteristics of new polyploidy variety for leaf and fruit-producing mulberry (Morus L). Sci Agric Sin 44:562–569

    CAS  Google Scholar 

  • Wang Z, Wang M, Liu L, Meng F (2013a) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14:20299–20325

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Yi X, Huang P, Peng M, Guo A (2013b) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Guo Q, Wang Q, Zhou XR, Wang SM (2015) PtAKT1 maintains selective absorption capacity for K+ over Na+ in halophyte Puccinellia tenuiflora under salt stress. Acta Physiol Plant 37:1–10

    Google Scholar 

  • Wu GQ, Xi JJ, Wang Q, Ma Q, Bao AK, Zhang JL, Wang SM (2011) The ZxNHX gene encoding tonoplast Na+/H+ antiporter in the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J Plant Physiol 168:758–767

    CAS  PubMed  Google Scholar 

  • Wu GQ, Liang N, Feng RJ, Zhang JJ (2013) Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol Plant 35:2665–2674

    CAS  Google Scholar 

  • Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB (2015a) Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul 75:307–316

    CAS  Google Scholar 

  • Wu GQ, Shui QZ, Wang CM, Zhang JL, Yuan HJ, Li SJ, Liu ZJ (2015b) Characteristics of Na+ uptake in sugar beet (Beta vulgaris L.) seedlings under mild salt conditions. Acta Physiol Plant 37:70

    Google Scholar 

  • Xu J, Tian X, Eneji AE, Li Z (2014) Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton (Gossypium hirsutum). Gene 545:61–71

    CAS  PubMed  Google Scholar 

  • Xue H, Zhang F, Zhang ZH, Fu JF, Wang F, Zhang B, Ma YY (2015) Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Sci Hortic 190:24–30

    CAS  Google Scholar 

  • Xue H, Zhang B, Tian JR, Chen MM, Zhang YY, Zhang ZH, Ma YY (2017) Comparison of the morphology, growth and development of diploid and autotetraploid ‘hanfu’ apple trees. Sci Hortic 225:277–285

    Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    PubMed  PubMed Central  Google Scholar 

  • Yan K, Wu C, Zhang L, Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica thunb.) under salt stress. Front Plant Sci 6:227

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhao L, Zhang H, Yang Z, Wang H, Wen S, Zhang C, Rustgi S, von Westtstein D, Liu B (2014a) Evolution of physiological responses to salt stress in hexaploidy wheat. Pro Natl Acad Sci USA 111:11882–11887

    CAS  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014b) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    PubMed  PubMed Central  Google Scholar 

  • Yuan F, Leng B, Wang B (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Front Plant Sci 7:435

    Google Scholar 

  • Yue LJ, Ma Q, Li SX, Zhou XR, Wu GQ, Bao AK, Zhang JL, Wang SM (2012) NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. J Arid Environ 87:153–160

    Google Scholar 

  • Zhang JL, Shi HZ (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60

    CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen SX, Li HY (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    PubMed  Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. Plos One 9:e112807

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X (2016) Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco. Pant Sci 253:176–186

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported jointly by the National Natural Science Foundation of China (Grant nos. 31860404 and 31460101) and the Natural Science Foundation of Gansu Province, China (18JR3RA152). We thank Dr. Chun-Mei Wang for assistance with Na+ and K+ measurement. We are also grateful to Prof. Hua-Zhong Wang, from Heilongjiang University, China, kindly providing seeds of two sugar beet cultivars for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Wu.

Additional information

Communicated by M. Capuana.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, GQ., Lin, LY., Jiao, Q. et al. Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.). Acta Physiol Plant 41, 52 (2019). https://doi.org/10.1007/s11738-019-2844-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2844-7

Keywords

Navigation