Skip to main content
Log in

Identification and transcriptional analysis of dehydrin gene family in cucumber (Cucumis sativus)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs) are a group II late embryogenesis abundant (LEA) proteins that play essential roles in plant growth, development and responses to diverse environmental stimuli. Here, four DHNs in cucumber genome were identified using bioinformatics-based methods according to the highly conserved K-, Y- and S-segments, including 1 YnKn-type, 2 YnSKn-type, and 1 SKn-type DHNs. All of them are intrinsically disordered proteins (IDPs) and possess a large number of disorder-promoting amino acids. Secondary structure prediction revealed that each of them is composed of high proportion of alpha helix and random coil. Gene structure and phylogenetic analyses with DHNs from cucumber and several other species revealed that some closely related DHN genes had similar gene structures. A number of cis-elements involved in stress responses and phytohormones were found in each CsDHN promoter. The tissue expression profiles suggested that the CsDHN genes have overlapping, but different expression patterns. qRT-PCR results showed that three selected CsDHN genes could respond to heat, cold, osmotic and salt stresses, as well as to signaling molecules such as H2O2 and ABA. These results lay a solid foundation for future functional investigation of the cucumber dehydrin gene family in tissue development and stress responses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedini R, GhaneGolmohammadi F, PishkamRad R, Pourabed E, Jafarnezhad A, Shobbar ZS et al (2017) Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley. J Plant Res 130:747–763

    Article  PubMed  CAS  Google Scholar 

  • Aguayo P, Sanhueza J, Noriega F, Ochoa M, Lefeuvre R, Navarrete D et al (2016) Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances tolerance to freezing stress in Arabidopsis. Trees 30:1785–1797

    Article  CAS  Google Scholar 

  • Altunoglu YC, Baloglu P, Yer EN, Pekol S, Baloglu MC (2016) Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regul 80:225–241

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A et al (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Li X (2015) Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757–772

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Xiang X, Geng M, You Q, Huang X (2017) Effect of HbDHN1 and HbDHN2 genes on abiotic stress responses in Arabidopsis. Front Plant Sci 8:470

    PubMed  PubMed Central  Google Scholar 

  • Charfeddine S, Charfeddine M, Saïdi MN, Jbir R, Bouzid RG (2017) Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses. Plant Cell Tiss Organ Cult 128:423–435

    Article  CAS  Google Scholar 

  • Chen RG, Jing H, Guo WL, Wang SB, Ma F, Pan BG et al (2015) Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep 34:2189–2200

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta A, Muto A, Bruno L, Woloszynska M, Van Lijsebettens M, Bitonti MB (2015) A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front Plant Sci 6:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Eriksson SK, Kutzer M, Procek J, Grobner G, Harryson P (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Save R, Goday A (2004) Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251–257

    Article  CAS  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681–684

    Article  CAS  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo M, Yin YX, Ji JJ, Ma BP, Lu MH, Gong ZH (2014) Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L.). Genet Mol Res 13:1865–1875

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Zhang L, Zhu J, Liu H, Wang A (2017) Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. Plant Sci 256:160–169

    Article  PubMed  CAS  Google Scholar 

  • Halder T, Upadhyaya G, Ray S (2017) YSK2 type dehydrin (SbDhn1) from Sorghum bicolor showed improved protection under high temperature and osmotic stress condition. Front Plant Sci 8:918

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara M, Endo T, Kamiya K, Kameyama A (2017) The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins. J Plant Physiol 210:18–23

    Article  PubMed  CAS  Google Scholar 

  • Hill W, Jin XL, Zhang XH (2016) Expression of an arctic chickweed dehydrin, CarDHN, enhances tolerance to abiotic stress in tobacco plants. Plant Growth Regul 80:323–334

    Article  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Hu L, Yang Y, Jiang L, Liu S (2016) The catalase gene family in cucumber: genome-wide identification and organization. Genet Mol Biol 39:408–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  CAS  Google Scholar 

  • Hussain S, Niu Q, Qian M, Bai S, Teng Y (2015) Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia). Tree Genet Genomes 11:110

    Article  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35:W460–W464

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing H, Li C, Ma F, Ma JH, Khan A, Wang X et al (2016) Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLoS One 11:e0161073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar ZS, Tafreshi RS, Abedini R et al (2013) Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol Plant 35:2289–2297

    Article  CAS  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J et al (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom 14:433

    Article  CAS  Google Scholar 

  • Kumar M, Lee SC, Kim JY, Kim SJ, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  PubMed  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768

    Article  PubMed  CAS  Google Scholar 

  • Liu CC, Li CM, Liu BG, Ge SJ, Dong XM, Li W et al (2012) Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Mol Biol Rep 30:848–859

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R et al (2014) Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteom 13:632–652

    Article  CAS  Google Scholar 

  • Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P (2017) Expression of CdDHN4, a novel YSK2-type dehydrin gene from Bermudagrass, responses to drought stress through the ABA-dependent signal pathway. Front Plant Sci 8:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik AA, Veltri M, Boddington KF, Singh KK, Graether SP (2017) Genome analysis of conserved dehydrin motifs in vascular plants. Front Plant Sci 8:709

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Mayor A, Pineda B, Garcia-Abellan JO, Anton T, Garcia-Sogo B, Sanchez-Bel P et al (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA et al (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  PubMed  CAS  Google Scholar 

  • Perdiguero P, Collada C, Soto A (2014) Novel dehydrins lacking complete K-segments in Pinaceae. The exception rather than the rule. Front Plant Sci 5:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saibi W, Feki K, Ben Mahmoud R, Brini F (2015) Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta 242:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Shekhawat UKS, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  PubMed  CAS  Google Scholar 

  • Verma G, Dhar YV, Srivastava D, Kidwai M, Chauhan PS, Bag SK et al (2017) Genome-wide analysis of rice dehydrin gene family: its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS One 12:e0176399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117

    Article  PubMed  CAS  Google Scholar 

  • Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C et al (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziołkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Zhou Y, He P, Xu Y, Liu Q, Yang Y, Liu S (2017a) Overexpression of CsLEA11, a Y3SK2-type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli. AMB Express 7:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Hu L, Jiang L, Liu H, Liu S (2017b) Molecular cloning and characterization of an ASR gene from Cucumis sativus. Plant Cell Tiss Organ Cult 130:553–565

    Article  CAS  Google Scholar 

  • Zhou Y, Hu L, Wu H, Jiang L, Liu S (2017c) Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int J Genom 2017:7243973

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Youth Science Foundation of Jiangxi Province (20171ACB21025), the National Natural Science Foundation of China (31460522 and 31660578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Communicated by S Abe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Hu, L., Xu, S. et al. Identification and transcriptional analysis of dehydrin gene family in cucumber (Cucumis sativus). Acta Physiol Plant 40, 144 (2018). https://doi.org/10.1007/s11738-018-2715-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2715-7

Keywords

Navigation