Skip to main content
Log in

Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Bananas are one of the most important fruits in tropical and subtropical regions worldwide. Each year, banana plantations expand, but the areas available are mostly dry lands. The establishment of strategies for obtaining drought tolerant cultivars depends on understanding of biological responses at genetic, molecular and biochemical levels. Proteomics is a powerful tool for functional characterization of the response of plants to abiotic stress and little is known about drought tolerance in Musa spp. Therefore, the aim of this study was to identify proteins related to drought tolerance in two contrasting banana genotypes, Prata Anã and BRS Tropical, susceptible and tolerant to drought, respectively. Proteins were extracted from rhizomes of bananas grown under greenhouse conditions with control, irrigated and water deficit regimes. The differential protein expression pattern was established by two-dimensional (2-D) electrophoresis and spots analyzed in nano Q-Tof Micro UPLC. Twenty-three differentially expressed proteins were found in the tolerant genotype (BRS Tropical) under water deficit, with proteins involved in metabolism, defense and transport. Proteins were classified according to known function and biosynthetic pathways. Signaling proteins in response to water stress, especially for the biological function of growth and development of plants cells, were also encountered, whereas heat shock proteins played a significant role. This is the first report of proteomic analysis for drought tolerance in ‘Pome’ and ‘Silk-type’ bananas containing the ‘B’ genome. Our work provides insights into Musa spp. response to drought and data for further studies regarding molecular mechanisms, which determine how Musa spp. cells better overcome environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque JAC (2009) Caracterização da subtilisina relacionada com a degradação da ribulose bisfosfato carboxilase de plantas. DS thesis. Instituto Superior de Agronomia. Doutorado em Engenharia Agronômica, Lisboa, Portugal

  • Anderson JV (1994) Organização estrutural de espinafre gene cognato retículo endoplasmático-70-kDa de choque térmico e expressão de 70-kDa choque térmico genes durante aclimatação ao frio. Physiol Plant 104:1359–1370

    Article  CAS  Google Scholar 

  • Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merril) plants at high frequency. Theor Appl Genet 101:1–6

    Article  Google Scholar 

  • Jaimie M, Norman V, Benfey PN (2009) Arabidopsis thaliana as a model organism in systems biology. Wiley Interdiscip Rev Syst Biol Med 29:1(3):372–379

  • Beyene B, Haile G, Matiwos T, Jimma HD (2016) Review on proteomics technologies and its application for crop improvement. Innov Syst Des Eng 7:7–15

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Estratégias para a tolerância. Engenharia estresse hídrico em plantas. Tendências em Biotecnologia 14:89–97

    CAS  Google Scholar 

  • Bray EA (2009) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Onckelen VH, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    Article  CAS  PubMed  Google Scholar 

  • Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Lagana A (2009) Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci 177:570–576

    Article  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 407:2365–2384

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Clauset A, Newman MEJ (2004) Finding community structure in very large networks. Phys Rev E Phys Rev E 70:066111

    Article  Google Scholar 

  • Dai X, Otake K, You C, Cai Q, Wang Z, Masumoto H, Wang Y (2013) Identification of novel α-n-methylation of CENP-B that regulates its binding to the centromeric DNA. J Proteome Res 12(9):4167–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim D-W, Basu C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybeans. Biomed Res Int 2016:23. https://doi.org/10.1155/2016/6021047

    Article  Google Scholar 

  • Ellis RJ (1991) Chaperones moleculares. Annu Revista Biochem 60:321–347

    Article  CAS  Google Scholar 

  • Emam MM, Khattab HE, Helal NM, Deraz AE (2014) Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust J Crop Sci 8:596–605

    Google Scholar 

  • FAO, Food and agriculture organization of the United Nations. http://www.faostat.fao.org/site/340/default.aspx. Accessed in 06 May 2017

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) A Plant drought stress: effects, mechanisms and management. Agronomic Sustain Dev 29:185–212

    Article  Google Scholar 

  • Garcia AB, Engler JD, Claes B, Villarroel R, Van Montagu M, Gerats T, Caplan A (1998) The expression of the salt-responsive gene SALT from rice is regulated by hormonal and developmental cues. Plant Physiol 207:172–180

    CAS  Google Scholar 

  • Giorini S (1991) Caracterização de proteínas de HSP-70 cognatos de trigo. Theor Appl Gen 82:615–620

    Article  CAS  Google Scholar 

  • Gong H, Chen K, Chen G, Wang S, Zhang C (2003) Drought stress stimulates p-nitrophenyl phosphate hydrolysis rate of the plasma membrane H+-ATPase from wheat leaves. Plant Growth Regul 40:139–145

    Article  CAS  Google Scholar 

  • Grunwald I, Heinig I, Thole HH, Newmann D, Kahmann U, Kloppstech K, Gau AE (2007) Purification and characterization of a jacalin related, coleoptile speciphc lectin from Hordeum vulgare. Plant Physiol 226:225–234

    CAS  Google Scholar 

  • Guicherd P, Peltier JP, Gout E, Bligny R, Marigo G (1997) Osmotic adjustment in Fraxinus excelsior L. malate and mannitol accumulation in leaves under drought conditions. Trees 11:155–161

    Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci 15:1629–16333

    Article  Google Scholar 

  • Holman JD, Dasari S, Tabb DL (2013) Informatics of protein and posttranslational modification detection via shotgun proteomics. Methods Mol Biol 1002:167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MRE, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress downregulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jiao S, Hilaire E, Guikema JA (2004) Identification and differential accumulation of to isoforms of the CFI 1-β subunit under high light stress in Brassica rapa. Plant Physiol Biochem 42:883–890

    Article  CAS  PubMed  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kang HM, Park KW, Saltveit ME (2005) Chilling tolerance of cucumber (Cucumis sativus) seedling radicles is affected by radicle length, seedling vigour and induced osmotic and heat-shock proteins. Physiol Plant 124:485–492

    Article  CAS  Google Scholar 

  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR (2002) 3rd. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99:11969–11974

  • Maere S, Heymans K, Kuiper, M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21(16):15:3448–3449

  • Kumar V, Mils DJ, Anderson JD, Mattoo AK (2004) An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. PNAS 111:10535–10540

    Article  Google Scholar 

  • Lacour S, Landini P (2004) σS-dependente a expressão do gene no início da fase estacionária em Escherichia coli: função de σS-dependentes genes e identificação de sequências de seus promotores. J Bac 186:7186–7195

    Article  CAS  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108

    Article  CAS  PubMed  Google Scholar 

  • Leal-Costa MV, Aragão FJL, Tavares ES (2008) Anatomia foliar de plantas transgênicas e não transgênicas de Glycine max (L.) Merrill (Fabaceae). Revista Biociências

  • Lee J-H, Yun HS, Kwon C (2012) Molecular communications between plant heat shock responses and disease resistance. Mol Cells 34:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low R, Rockel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinola E, Littge U, Rausch T (1998) Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110:259–265

    Article  Google Scholar 

  • Lu D, Ni W, Stanley BA, Ma H (2016) Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC Plant Biol. https://doi.org/10.1186/s12870-015-0571-9

    Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watnabe-Takahashi A, Yamata T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos-Moreira L. Physiological responses and proteomic analysis of bananas submitted to water déficit. Universidade Federal do Reconcavo da Bahia, Cruz das Almas, Bahia. D.S. Thesis. 2013. 108 p

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(2002):405–410

    Article  CAS  PubMed  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Mol Plant Biol 52:561–591

    Article  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Greenlief CM, Thelen JJ (2006) Using quantitative proteomics of Arabidopsis roots and leaves to predict metabolic activity. Physiol Plant 128:237–250

    Article  CAS  Google Scholar 

  • Moura AA, Koc H, Chapman DA, Killian GJ (2006) Identification of accessory sex gland fluid proteins as related to fertility indexes of dairy bulls: a proteomic approach. J Androl 27:201–211

    Article  CAS  PubMed  Google Scholar 

  • Musrati RA, Kollarova M, Mernik N, Mikulasova D (1998) Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys 17:193–210

    CAS  PubMed  Google Scholar 

  • Narashimhan ML, Binzel ML, Perez-Prat E, Chen Z, Nelson DE, Singh NK, Bressan NK, Hasegawa PM (1991) NaCl regulation of tonoplast ATPase 70 kilodalton subunit mRNA in tobacco cells. Plant Physiol 97:562–568

    Article  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1998) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Eletroforesis 9:255–2628

    Article  Google Scholar 

  • Nuccio ML, Rholes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  CAS  PubMed  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31(4):323–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Petricoin EF, Zoon KC, Kohn EC, Barret JC, Liotta LA (2011) Clinical proteomics: translating bench side promise into bedside reality. Nat Rev Drug Discov 1:683–695

    Article  Google Scholar 

  • Peumans WJ, Zhang W, Barre A, Houles Astoul C, Balinkt-Kurti PJ, Rovira P, Rouge P, May GD, Van Leuven F, Truva-Bachi P, Van Damme EJ (2000) Fruit-specific lectins from banana and plantain. Plant 211:546–554

    Article  CAS  Google Scholar 

  • Pirovani CP, Carvalho HA, Machado RC, Gomes DSI (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches broom disease. Electrophoresis 29:2391–2401

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Supressão de crescimento, alterações nas respostas estomática, e aumentada a indução de proteínas de choque térmico em ascorbato peroxidase citosólica (Apx1) deficientes em plantas de Arabidopsis. Usina 34(2):187–203

  • Prins A, Van Heerden PD, Olmos E, Kunert KJ, Foyer CH (2008) Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5- isphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. J Exp Bot 59:1935–1950

    Article  CAS  PubMed  Google Scholar 

  • Reis PAA, Rosado GL, Silva LAC, Oliveira LC, Oliveira LB, Costa MDL, Alvim FC, Fontes EPB (2011) The Binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. Plant Physiol 157:2011

    Article  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Robinson JC (1996) Bananas and plantains, vol 5. CAB International, Wallingford

  • Rolla AAP, Fatima J, Carvalho C (2014) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23:75–87

    Article  Google Scholar 

  • Roy A, Rushton PJ, Rohila JS (2011) The potential of proteomics technologies for crop improvement under drought conditions. Crit Rev Plant Sci 30:471–490

    Article  CAS  Google Scholar 

  • Scarpeci T, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3(10):856–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Permissões e Reguladoras redes metabólicas em resposta ao estresse de seca. Plant Sci Center 10:296–302

    CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Kshinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SG, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic tolerance in crop plants). Plant Physiol Biochem 48:909–930

    Article  Google Scholar 

  • Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q (2007) Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 7:3538–3557

    Article  CAS  PubMed  Google Scholar 

  • Souza GA, Ferreira BS, Dias JM, Queiroz KS, Branco AT, Bressan Smith RE, Oliveira JG, Garcia AB (2003) Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci 164:623–628

    Google Scholar 

  • Sze H, Jm Ward, Lai S (1992) Vacuolar H+ translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr 24:371–381

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucl Acids Res 45:362–368

    Article  Google Scholar 

  • Thomas DS, Turner D, Eamus D (1998) Independent effects of the environment on the leaf gas exchange of three banana (Musa sp.) cultivars of different genomic constitution. Sci Horticul 75:41–57

    Article  Google Scholar 

  • Turner NC (1986) Adaptation to water deficits: a change in perspective. Aust J Plant Physiol 13:175–190

    Article  Google Scholar 

  • Van Damme EJM, Lannoo N, Fourquart E, Peumans W (2004) The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. J Glycoconj J 20:449–460

    Article  Google Scholar 

  • Vanhove AC, Vermaelen W, Panis B, Swennen R, Carpentier S (2012) Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Plant Sci 3:1–10

    Google Scholar 

  • Vierling E (1991) Os papeis de choque térmico-proteínas em plantas. Annu Rev Plant Physiol Mol Plant Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vitale A (2009) Calreticulins are all the same. Proc Natl Acad Sci 106:13151–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Plant Physiol 218:1–14

    CAS  Google Scholar 

  • Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17:1–30

    Article  Google Scholar 

  • Yan S, Tang Z, Su W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ni L, Somerville RL (1993) Uma proteína de fase estacionária, de Escherichia coli, que afeta o modo de associação entre a proteína do repressor e operador Trp-rolamento DNA. Proc Natl Acad Sci 90:5796–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by FAPESB (Fundação de Amparo à Pesquisa no Estado da Bahia) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) provided the scholarship of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fortes Ferreira.

Additional information

Communicated by K. Apostol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattos-Moreira, L.A., Ferreira, C.F., Amorim, E.P. et al. Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.). Acta Physiol Plant 40, 60 (2018). https://doi.org/10.1007/s11738-018-2638-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2638-3

Keywords

Navigation