Skip to main content
Log in

Antioxidant responses under jasmonic acid elicitation comprise enhanced production of flavonoids and anthocyanins in Jatropha curcas leaves

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Jatropha curcas has significant potential for production of biodiesel and secondary metabolites with medical applications. The effect of jasmonic acid (JA) on flavonoid production and antioxidant responses in two Mexican J. curcas plants (accessions I-64 and I-52), growing under controlled environmental conditions, was studied. Foliar application of JA (0.25, 0.5, and 1.0 mM) increased flavonoid content by 3.3-fold (445.6 ± 62.2 µg QE g−1 DW) at 1.0 mM in the I-64 accession after 120 h. At this time, individual flavonoid levels of kaempferol, apigenin, and vitexin were 6.8 (106.8 ± 18.6 µg g−1 DW), 4.4 (15.5 ± 1.5 µg g−1 DW), and 8.1 (6.27 ± 1.3 µg g−1 DW) times higher than in the controls, while for the I-52 specimens, the highest increase of flavonoids occurred at 24 h. In treated I-52 plants, enhancement of 58% (74.7 ± 9.2 µg g−1 DW) in anthocyanins occurred after 120 h, while in I-64 plants, they remained similar to controls. Phenylalanine ammonia lyase showed a peak of activity after 120 h in treated I-64 plants, while the I-52 accession showed peaks at 24 and 120 h. Elicited I-64 plants presented H2O2 levels similar to controls with a 30.6% increase in catalase (CAT) and 3.3-fold in ascorbate peroxidase (APX) activities. In elicited I-52 plants, a 2.4-fold increase in H2O2 concentration was related to a 65.6% decrease of CAT and a 1.8-fold increase of APX activities. Therefore, under JA elicitation, J. curcas plants increased antioxidant responses including flavonoid and anthocyanin production to maintain cell redox balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621

    Article  CAS  PubMed  Google Scholar 

  • Alvero-Bascos EM, Ungson LB (2012) Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of Jatropha (Jatropha curcas L.). Philipp Agric Sci 95:335–343

    Google Scholar 

  • Baudouin E, Charpenteau M, Ranjeva R, Ranty B (1999) Involvement of active oxygen species in the regulation of a tobacco defence gene by phorbol ester. Plant Sci 142:67–72

    Article  CAS  Google Scholar 

  • Baudouin E, Charpenteau M, Ranjeva R, Ranty B (2002) A 45-kDa protein kinase related to mitogen-activated protein kinase is activated in tobacco cells treated with a phorbol ester. Planta 214:400–405

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    Article  PubMed  Google Scholar 

  • de la Peña MF, Blanch GP, Ruiz del Castillo ML (2010) (+)-Methyl jasmonate-induced bioformation of myricetin, quercetin and kaempferol in red raspberries. J Agric Food Chem 58:11639–11644

    Article  Google Scholar 

  • Erhard D, Pohnert G, Gross EM (2007) Chemical defense in Elodea nuttalli reduces feeding and growth of aquatic herbivorous Lepidoptera. J Chem Ecol 33:1646–1661

    Article  CAS  PubMed  Google Scholar 

  • Falcone-Ferreyra ML, Rius SP, Casti P (2012) Flavonoids: biosynthesis, biological functions and biotechnological applications. Front Plant Sci 3:1–12

    Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants. Plant Cell Physiol 49:1767–1782

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88:6745–6749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Zhang S, Cai F, Zheng X, Lin N, Quin X, Ou Y, Gu X, Zhu X, Xu Y, Chen F (2012) Characterization and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L. Mol Biol Rep 39:3443–3452

    Article  PubMed  Google Scholar 

  • Giberti S, Bertea CM, Narayana R, Maffei ME, Forlani G (2012) Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J Plant Physiol 169:249–254

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahlbrock K, Ragg H (1975) Light-induced changes of enzyme activities in parsley cell suspension cultures: effects of inhibitors of RNA and protein synthesis. Arch Biochem Biophys 166:41–46

    Article  CAS  PubMed  Google Scholar 

  • Hendrawati O, Yao Q, Kim HK, Linthorst HJM, Erkelens C, Lefeber AWM, Choi YH, Verpoorte R (2006) Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic resonance spectroscopy. Plant Sci 170:1118–1124

    Article  CAS  Google Scholar 

  • Horbowicz M, Wiczkowski W, Koczkodaj D, Saniewski M (2011) Effects of methyl jasmonate on accumulation of flavonoids in seedling of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Hung 62:265–278

    Article  CAS  PubMed  Google Scholar 

  • Krcatović E, Rusak G, Bezić N, Krajacić M (2008) Inhibition of tobacco mosaic virus infection by quercetin and isovitexin. Acta Virol 52:119–124

    PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. doi:10.1155/2013/162750

    Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial use (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10

    Article  CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1987) Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol 85:601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zu Y-G, Fu Y-J, Kong Y, Ma W, Yang M, Li J, Wu N (2010) Variations in contents of phenolic compounds during growth and post-harvest storage of pigeon pea seedlings. Food Chem 121:732–739

    Article  CAS  Google Scholar 

  • Mahady GB, Liu C, Beecher CWW (1998) Involvement of protein kinase and G proteins in the signal transduction of benzophenanthridine alkaloid biosynthesis. Phytochemistry 48:93–102

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Herrera J, Martinez-Ayala AL, Makkar H, Francis G, Becker K (2010) Agroclimatic conditions, chemical and nutritional characterization of different provenances of Jatropha curcas L. from México. Eur J Sci Res 39:396–407

    Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mierziak J, Wojtasik W, Kostyn K, Czuj T, Szopa J, Kulma A (2014) Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny of improved antifungal and antioxidative properties. Mol Breeding 34:1917–1932

    Article  CAS  Google Scholar 

  • Onkokesung N, Reichelt M, Van Doorn A, Schuurink RC, van Loon JJ, Dicke M (2014) Modulation of flavonoids metabolites in Arabidopsis through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 65:2203–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Prasad DMR, Izam A, Khan MMR (2012) Jatropha curcas: plant medical benefits. J Med Plants Res 6:2691–2699

    Google Scholar 

  • Salvador-Figueroa M, Magaña-Ramos J, Vázquez-Ovando JA, Adriano-Anaya ML, Ovando-Medina I (2015) Genetic diversity and structure of Jatropha curcas L. in its center of origin. Plant Genet Resour 13:9–17

    Article  CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Proc Bulg Acad Sci 51:121–124

    Google Scholar 

  • Shan X, Zhang Y, Peng W, Wang Z, Xie D (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60:3849–3860

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ferreira-Silva SL, Fontenele AV, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza-Martínez F, Lucho-Constantino GG, Ponce-Noyola T, Esparza-García F, Poggi-Varaldo H, Cerda-García-Rojas CM, Trejo-Tapia G, Ramos-Valdivia AC (2016) Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell Tiss Org Cult 127:47–56

    Article  Google Scholar 

  • Zavala del Angel I, García-Pérez E, González Hernández D, Pérez Vázquez A, Ávila Reséndiz C (2016) Genetic diversity of Jatropha curcas L. in Veracruz state, Mexico, and its relationships with the content of phorbol esters. Glo Adv Res J Agric Sci 5:149–158

    Google Scholar 

  • Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Guo X, Liu B, Tang L, Chen F (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotech 10:2825–2832

    Article  CAS  Google Scholar 

  • Zhang L, Zhang C, Wu P, Chen Y, Li M, Jiang H, Wu G (2014) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS ONE 9:e97878. doi:10.1371/journal.pone.0097878

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerman A, Hahlbrock K (1975) Light induced changes in enzyme activities in parsley cell suspension. Purification and some properties of phenylalanine ammonia-lyase. Arch Biochem Biophys 166:54–62

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CINVESTAV-IPN and CONACYT-Mexico (Grant 222097). GGLC acknowledges CONACYT-Mexico for a doctoral fellowship (52756). Authors wish to thank Dr. Gabriela Luna-Palencia for her advice in chromatographic analysis and Carmen Fontaine for technical support. We are grateful to Drs. Arturo Pérez Vázquez, Eliseo García-Pérez and Ivan Zavala del Angel for donation of seeds from the Germplasm Bank of Colegio de Postgraduados, Campus Veracruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Ramos-Valdivia.

Additional information

Communicated by H. Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucho-Constantino, G.G., Zaragoza-Martínez, F., Ponce-Noyola, T. et al. Antioxidant responses under jasmonic acid elicitation comprise enhanced production of flavonoids and anthocyanins in Jatropha curcas leaves. Acta Physiol Plant 39, 165 (2017). https://doi.org/10.1007/s11738-017-2461-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2461-2

Keywords

Navigation