Skip to main content
Log in

Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study investigated the effects of increased sunlight on photooxidation of rice leaf mutant 812HS and its wild-type 812S under field conditions. Light is important for plant growth and development. However, when the absorbed energy exceeds the capacity of utilization of photosynthesis, it leads to the accumulation of singlet oxygen molecules and other reactive oxygen species, which causes oxidative damage. Chlorophyll a fluorescence was applied to examine photosystem II photochemistry. The results demonstrated that intensive light had a negative influence on plant photosynthetic processes. However, the electron transport chain was inhibited and energy dissipation was increased, which can minimize photooxidative damage to the optical system. Meanwhile, proteomic analysis showed that the differential expression of proteins in response to photooxidation participated in multiple pathways, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit, RuBisCO large chain precursor, RuBisCO activase, flavodoxin-like quinone reductase 1, l-ascorbate peroxidase S, oxygen-evolving complex protein 1, and glycolate oxidase. The results indicated that photooxidation induced a response in the rice via the stress-related pathway. The aforementioned proteins, identified by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), may be very useful in comprehending how plants respond to photooxidation and can be used as characteristics of stress-induced signals. The results of chlorophyll fluorescence parameter analysis demonstrated the negative influence of intense light on plant photosynthetic processes. This was evidenced by the dissipation of excessive energy and the suppression of the electron transport chain to minimize photooxidative damage to the proteins. Future studies should compare the proteomic difference with parallel gene expression and metabolite profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

CHAPS:

3-((3-Cholamidopropyl) dimethylammonio)-1-propane sulfonate

Chl:

Chlorophyll

DTT:

Dithiothreitol

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradients

MS:

Mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption/ionization time-of-flight

1O2 :

Singlet state oxygen

OJIP:

Chl a fluorescence transient

RC:

Reaction centers

TCA:

Tricarboxylic acid

References

  • Abdel-Shafi AA, Worrall DR, Wilkinson F (2001) Singlet oxygen formation efficiencies following quenching of excited singlet and triplet states of aromatic hydrocarbons by molecular oxygen. J Photochem Photobiol A 142:133–143

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2008) Ambient UV-B radiation decreases photosynthesis in high Arctic Vaccinium uliginosum. Physiol Plant 133:199–210

    Article  CAS  PubMed  Google Scholar 

  • And GHK, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42:313–349

    Article  Google Scholar 

  • Antal TK, Venediktov PS, Matorin DN, Ostrowska M, Bogdan W, Rubin AB (2001) Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer. Oceanologia 31:291–313

    Google Scholar 

  • Bah AM, Dai H, Zhao J, Sun H, Cao F, Zhang GP, Wu FB (2011) Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biol Trace Elem Res 142:77–92

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, East TM, Long SP (2014) Chilling damage to photosynthesis in young zea mays: 1. Effects of light and temperature variation on photosynthetic CO2 assimilation. J Exp Bot 34:177–188

    Google Scholar 

  • Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Hajihoseini V, Mardi M, Hajirezaei MR, Moradi F, Ehdaie B, Salekdeh GH (2011) A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteom 74:1959–1973

    Article  CAS  Google Scholar 

  • Boureima S, Oukarroum A, Diouf M, Cisse N, Damme PV (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Exp Agric 81:37–43

    CAS  Google Scholar 

  • Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang X, Jiao H, Zhao B (2003) Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells. Chem Res Toxicol 16:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Dai XS, Qiang S, Tang Y (2005) Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol 54:671–677

    Article  CAS  Google Scholar 

  • Chen W, Feng C, Guo W, Shi D, Yang C (2011) Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants. Photosynthetica 49:417–425

    Article  CAS  Google Scholar 

  • Cheng DD, Zhang ZS, Sun XB, Zhao M, Sun GY, Chow WS (2016) Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by Pseudomonas syringae pv. Tabaci under light and dark conditions. BMC Plant Biol 16:1–11

    Article  CAS  Google Scholar 

  • Demmig-Adams AB, Lii WWA (1992) Photoprotection and other response of plants to high light stress. Annu Rev Plant Physiol Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Dwivedi AD, Dubey SP, Sillanpää M, Kwon YN, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev 287:64–78

    Article  CAS  Google Scholar 

  • Gao MJ, Dvorak J, Travis R (2001) Expression of the extrinsic 23-kDa protein of photosystem II in response to salt stress is associated with the K+/Na+ discrimination locus Kna1 in wheat. Plant Cell Rep 20:774–778

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta (BBA) Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Hamamoto K, Aki T, Shigyo M, Sato S, Ishida T, Yano K, Yoneyama T, Yanagisawa S (2012) Proteomic characterization of the greening process in rice seedlings using the MS spectral intensity-based label free method. J Proteome Res 11:331–347

    Article  CAS  PubMed  Google Scholar 

  • Holland V, Koller S, Brüggemann W (2014) Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis. Plant Biol 16:801–808

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Bioch 81:16–25

    Article  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kda: molecular biology, biochemistry, and physiology. Pharmacol Therapeut 80:183–201

    Article  CAS  Google Scholar 

  • Kim JH, Lee CH (2005) In vivo deleterious effects specific to reactive oxygen species on photosystem I and II after photo-oxidative treatments of rice (Oryza sativa L.) leaves. Plant Sci 168:1115–1125

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kreslavski VD, Lankin AV, Vasilyeva GK, Luybimov VY, Semenova GN, Schmitt FJ, Friedrich T, Allakhverdiev SI (2014) Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. Plant Physiol Biochem 81:135–142

    Article  CAS  PubMed  Google Scholar 

  • Kumar KS, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH (2014) Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf 10:51–71

    Article  Google Scholar 

  • Lai D, Xia SJ, Lv CG, Wei XD, Liu SK, Zhang B, Liao HM, Yan WF, Zong SY, Zhang QJ (2012) Mapping of a leaf photo-oxidation gene LPO1(t) in rice. Jiangsu J Agric Sci 28:1212–1217

    Google Scholar 

  • Lommel L, Chen L, Madura K, Sweder K (2000) The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res 28:4839–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinazzo EG, Ramm A, Bacarin MA (2009) The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Braz J Plant Physiol 21:1664–1671

    Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Rapacz M, Sasal M, Gut M (2011) Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of triticale (×Triticosecale Wittmack). J Agron Crop Sci 197:378–389

    Article  CAS  Google Scholar 

  • Sharma DK, Fernández JO, Rosenqvist E, Ottosen CO, Andersen SB (2014) Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat. J Plant Physiol 171:576–586

    Article  CAS  PubMed  Google Scholar 

  • Sjögren LL, Clarke AK (2011) Assembly of the chloroplast ATP-dependent CIp protease in Arabidopsis is regulated by the CIpT accessory proteins. Plant Cell 23:322–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient, vol 19. Springer, Netherlands, pp 321–362

    Book  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  • Szabó I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Vass I, Cser K, Cheregi O (2002) Molecular mechanisms of light stress of photosynthesis. Mol Mech Photosynth 256:42–48

    Google Scholar 

  • Verniquet F, Gaillard J, Neuburger M, Douce R (1991) Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 15:276 (pt3):643–648

  • Wang YW, Yu GH, Li K, Wu M, Ma J, Xu JG, Chen GX (2015) Responses of photosynthetic properties and antioxidant enzymes in high-yield rice flag leaves to supplemental UV-B radiation during senescence stage. Environ Sci Pollut R 22:4695–4705

    Article  CAS  Google Scholar 

  • Wang YW, Xu C, Lv CF, Wu M, Cai XJ, Liu ZT, Song XM, Chen GX (2016) Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L.) LYPJ during leaf senescence. Photosynthetica 54:422–429

    Article  CAS  Google Scholar 

  • Ward RJ, Zhang Y, Crichton RR (2001) Iron homeostasis and aluminium toxicity. J Inorg Biochem 87:9–14

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  Google Scholar 

  • Xia JR, Li YJ, Zou DH (2004) Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquat Bot 80:129–137

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu JG, Lv CG, Liu L, Lv CF, Ma J, Xia SJ, Chen GX, Gao ZP (2016) Characteristics of photosynthesis and antioxidation in rice photo-oxidation mutant 812HS. Acta Agron Sin 42:574–582

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteom 5:484–496

    Article  CAS  Google Scholar 

  • Yang CW, Wang P, Li CY, Shi DC, Wang DL (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107–114

    Article  CAS  Google Scholar 

  • Ye JW, Gong ZY, Chen CG, Mi HL, Chen GY (2012) A mutation of OSOTP 51 leads to impairment of photosystem I complex assembly and serious photo-damage in rice. J Integr Plant Biol 54:87–98

    Article  CAS  PubMed  Google Scholar 

  • Yu GH, Li W, Yuan ZY, Cui HY, Lv CG, Gao ZP, Han B, Gong YZ, Chen GX (2012) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51:33–44

    Article  Google Scholar 

  • Zhang JQ, An XG, Lin N, Wu WT, Wang LZ, Li ZT, Wang RQ, Wang Y, Liu JX, Wu MB (2016) Engineering monomer structure of carbon nitride for the effective and mild photooxidation reaction. Carbon 100:450–455

    Article  CAS  Google Scholar 

  • Zhou B, Cao C, Liu CX (2007) Advances in research on translation elongation factor 1 Alpha. Lett Biot 18:281–284

    CAS  Google Scholar 

  • Zhu SQ, Ji BH, Jiao DM (2004) Traits related to chilling-induced photoinhibition in leaves of indica and japonica rice (Oryza sativa). Rice Sci 11:205–213

    Google Scholar 

Download references

Acknowledgements

Studies in the Chen Laboratory are supported by the National Natural Science Foundation of China (Grant Nos. 31271621/C1302 and 31671663), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Youth Natural Science Foundation of Jiangsu Province (Grant No. BK20140916), the Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 14KJB180011), and Jiangsu Collaborative Innovation Center for Modern Crop Production.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxiang Chen or Chuangen Lv.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Communicated by Z Miszalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Lv, C., Xu, M. et al. Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation. Acta Physiol Plant 39, 46 (2017). https://doi.org/10.1007/s11738-016-2342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2342-0

Keywords

Navigation