Skip to main content
Log in

Molecular cloning and expression of tryptophan decarboxylase from Mitragyna speciosa

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine in mitragynine biosynthesis via the shikimate pathway. Using the rapid amplification of cDNA ends (RACE) technique, the gene encoding TDC from Mitragyna speciosa was cloned (designated as MsTDC). The MsTDC cDNA contained an open reading frame (ORF) of 1,521 base pairs (bp) encoding 506 amino acid residues. It had a pyridoxal-phosphate (PLP)-binding site at the amino acid position 313–334 residues. The MsTDC showed homology of 68–76 % to the TDC of other plants. Heterologous expression in Escherichia coli afforded the soluble proteins as an apparent band of 57 kDa as judged by SDS-PAGE. Expression of the MsTDC in M. speciosa hairy roots under the 35S promoter was performed by insertion of MsTDC into pCAMBIA1300-gfp. The transgenic hairy root lines were detected by fluorescence microscopy and showed an increased accumulation of tryptamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Canel C, Lopez-Cradoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of overexpression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal DOPA decarboxylase. Proc Natl Acad Sci 86:2582–2586

    Article  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Huber-Allanach KL, Tari LW (1999) Plant aromatic l-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54:121–138

    Article  Google Scholar 

  • Fernandez JA, Owen TG, Kurz WG, De Luca V (1989) Immunological detection and quantitation of tryptophan decarboxylase in developing Catharanthus roseus seedlings. Plant Physiol 91:79–84

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) The proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  • Goddijin OJM, Pennings EJM, van der Helm P, Verpoorte R, Hoge JHC (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323

    Article  Google Scholar 

  • Guillon S, Tremouillaux Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  PubMed  CAS  Google Scholar 

  • Fraley RT, Horsch, RB, Rogers SG (1994) Chimeric genes for transforming plant cells using viral promoters. United States Patent No. 5,352,605

  • Janchawee B, Keawpradub N, Chittrakarn S, Prasettho S, Wararatananurak P, Sawangjaroen K (2007) A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomed Chromatogr 21:176–183

    Article  PubMed  CAS  Google Scholar 

  • Jumali SS, Said IM, Baharum SN, Ismail I, Rahman ZA, Zainal Z (2011) Molecular cloning and characterization of strictosidine synthase, a key gene in biosynthesis of mitragynine from Mitragyna speciosa. Afr J Biotechnol 10(68):15238–15244

    Article  CAS  Google Scholar 

  • Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y (2009) Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol 27:67–74

    Article  CAS  Google Scholar 

  • López-Meyer M, Nessler CL (1997) Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J 11(6):1167–1175

    Article  PubMed  Google Scholar 

  • Nagakura N, Rueffer M, Zenk MH (1979) The biosynthesis of monoterpenoid indole alkaloids from strictosidine. J Chem Soc (Perkin I), 2308–2312

  • Noe W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    Article  CAS  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pennings EJM, Hegger I, Van der Heijden R, Duine JA, Verpoorte R (1987) Assay of tryptophan decarboxylase from Catharanthus roseus plant cell cultures by high-performance liquid chromatography. Anal Biochem 165:133–136

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Demppfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  Google Scholar 

  • Phongprueksapattana S, Putalun W, Keawpradub N, Wungsintaweekul J (2008) Mitragyna speciosa: hairy root culture for triterpenoid production and high yield of mitragynine by regenerated plants. Z Naturforsch 63c:691–698

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-Mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Stachel SE, Zambryski PC (1989) Generic trans-kingdom sex? Nature 340:190–191

    Article  PubMed  CAS  Google Scholar 

  • Takayama H (2004) Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull 52:916–928

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thongpraditchote S, Matsumoto K, Tohda M, Takayama H, Aimi N, Sakai S, Watanabe H (1998) Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice. Life Sci 62:1371–1378

    Article  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank for the Thailand Research Fund (TRF), the Office of the Higher Education Commission (HEC), Prince of Songkla University (PSU) and Faculty of Pharmaceutical Sciences (Grant No. RMU5380015). Grants from the PSU Graduate School and Songklanakarin Research Abroad to T.C. are also acknowledged. We thank Prof. Dr. Johan Memelink (Sylvius Laboratory, Leiden University, The Netherlands) for the lab facilities and kindly provide the pTH2, pRT101 and pMOG463 plasmids. We also thank Dr.Brian Hodgson and Mr. Joseph Materson for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraithip Wungsintaweekul.

Additional information

Communicated by J.-H. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charoonratana, T., Wungsintaweekul, J., Keawpradub, N. et al. Molecular cloning and expression of tryptophan decarboxylase from Mitragyna speciosa . Acta Physiol Plant 35, 2611–2621 (2013). https://doi.org/10.1007/s11738-013-1296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1296-8

Keywords

Navigation