Skip to main content
Log in

Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The process of alkaloid biosynthesis by Pancratium maritimum shoot culture, cultivated under submerged conditions, was investigated. Twenty-two compounds of different structural types of the Amaryllidaceae alkaloids (tyramine, narciclasine, galanthamine, haemanthamine, lycorine, pancracine, tazettine and homolycorine types) were detected in the studied samples from biomass and cultural liquid. Dominant compounds in the shoots were of tyramine, lycorine and haemanthamine types, whereas in the culture media were found mainly lycorine type compounds. Based on the multi-metabolic estimation of the alkaloid metabolism and physiological peculiarities, liquid cultures of P. maritimum shoots could be defined as prospective biological systems for producing bioactive molecules with acetylcholinesterase inhibitory and apoptotic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AChE:

Acetylcholinesterase

ADB:

Accumulated dry biomass

BAP:

6-Benzylaminopurine

DTNB:

Dithionitrobenzene

GC/MS:

Gas chromatography/mass spectroscopy

MS:

Murashige and Skoog nutrient medium

NAA:

α-Naphthylacetic acid

TIC:

Total ion current

References

  • Abbassy M, Gougery O, El-Hamady S, Sholo M (1998) Insecticidal, acaricidal and synergistic effects of soosan, Pancratium maritimum extracts and constituents. J Egypt Soc Parasitol 28:197–205

    PubMed  CAS  Google Scholar 

  • Abou-Donia A, Giulio A, Evidente A, Gaber M, Habib AA, Lanzetta R, El-Din A (1991) Narciclastine-4-O-β-D-glucopyranoside, a glucosyloxy amidic phenantridone derivate from Pancratium maritimum. Phytochemistry 30:3445–3448

    Article  CAS  Google Scholar 

  • Abou-Donia AH, Amer ME, Darwish FA, Kassem FF, Hammoda HM, Abdel-Kader MS, Zhou B-N, Kingston DGI (2002) Two new alkaloids of the crinane series from Pancratium sickenbergeri. Planta Med 68(4):379–381

    Article  PubMed  CAS  Google Scholar 

  • Bastida J, Lavilla R, Viladomat F (2006) Chemical and biological aspects of Narcissus alkaloids. In: Cordell GA (ed) The alkaloids, vol 63. Elsivier Scientific, Amsterdam, pp 87–179

  • Berkov S, Evstatieva L, Popov S (2004) Alkaloids in Bulgarian Pancratium maritimum L. Z Naturforsch 59c:65–69

    Google Scholar 

  • Berkov S, Bastida J, Sidjimova B, Viladomat F, Codina C (2008) Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): a case study. Biochem System Ecol 36:638–645

    Article  CAS  Google Scholar 

  • Cedron J, Oberti J, Estevez-Braun A, Ravelo A, Arco-Angular M, Lopez M (2009) Pancratium canariense as an important source of Amaryllidaceae alkaloids. J Nat Prod 72:112–116

    Article  PubMed  CAS  Google Scholar 

  • Evidente A, Kornienko A (2009) Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivates. Phytochem Rev 8:449–459

    Article  CAS  Google Scholar 

  • Georgiev V, Ilieva M, Bley Th, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiol Plant 30:581–593

    Article  CAS  Google Scholar 

  • Houghton P, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Heredia AA, Marin-Lopez R, Ponce-Noyola T, Cerda-Garcia-Rojas CM, Trejo-Tapia G, Ramos-Valdivia AC (2009) Oxidative stress induces alkaloid production in Urcaria tomentosa root and cell cultures in bioreactors. Eng Life Sci 9:211–218

    Article  CAS  Google Scholar 

  • Iordanov D (1964) Genus Pancratium. In: Iordanov D (ed) Flora of People’s Republic of Bulgaria, vol 2. Academic Press, Sofia, pp 323–324

  • Kinghorn AD, Chin YW, Swanson SM (2009) Discovery of natural product anticancer agents from biodiverse organisms. Curr Opinion Drug Disc Develop 12(2):189–196

    CAS  Google Scholar 

  • Kintsurashvili L, Vachnadze V (2007) Plants of the Amaryllidaceae family grown and introduced in Georgia: a source of galanthamine. Pharm Chem J 41(9):492–494

    Article  CAS  Google Scholar 

  • Liua J, Hua WX, Heb LF, Yec M, Lia Y (2004) Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett 578:245–250

    Article  Google Scholar 

  • Lopez S, Bastida J, Viladomat F, Codina C (2002) Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci 71:2521–2529

    Article  PubMed  CAS  Google Scholar 

  • Maelicke A, Samochocki M, Jostok R, Feherbacker A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitation of niconinic receptors by galanthamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiat 26:279–288

    Article  Google Scholar 

  • McNulty J, Nair JJ, Bastida J, Pandey S, Griffin C (2009) Structure-activity studies on the lycorine pharmacophore: a potent inducer of apoptosis in human leukemia cells. Phytochemistry 70:913–919

    Article  PubMed  CAS  Google Scholar 

  • Medrano M, Guitian P, Guitian J (1999) Breeding system and temporaral variation in fecundity of Pancratium maritimum L. (Amaryllidaceae). Flora 194:13–19

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Orhan I, Sener B (2003) Bioactivity-directed fractionation of alkaloids from some Amaryllidaceae plants and their anticholinesterase activity. Chem Nat Comp 39(4):383–386

    Article  CAS  Google Scholar 

  • Pavlov A, Popov S, Kovacheva E, Georgiev M, Ilieva M (2005) Volatile and polar compounds in Rosa damascena Mill 1803 cell suspension. J Biotechnol 118:89–97

    Article  PubMed  CAS  Google Scholar 

  • Pavlov A, Berkov S, Courot E, Gocheva T, Tuneva D, Pandova B, Georgiev M, Georgiev V, Yahev S, Burrus M, Ilieva M (2007) Galanthamine production by Leucojum aestivum in vitro systems. Proc Biochem 42:734–739

    Article  CAS  Google Scholar 

  • Perry NSL, Noughton PJ, Theobald AE, Jenner P, Perry EK (2000) In vitro inhibition of human erythrocyte acetylcholine esterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol 52:895–902

    Article  PubMed  CAS  Google Scholar 

  • Sandberg F, Michel KH (1968) Alkaloids of Pancratium maritimum. Acta Pharm Suec 5:61–66

    PubMed  CAS  Google Scholar 

  • Senar B, Konucol S, Kruk C, Pandit U (1993) New crinine type alkaloids from Pancratium maritimum growing in Turkey. Nat Prod Lett 1:287–291

    Google Scholar 

  • Senar B, Konucol S, Kruk C, Pandit U (1994) Alkaloids of Amaryllidaceae II. Alkaloids of crinine class from Pancratium maritimum. J Chem Soc Pak 16:275–279

    Google Scholar 

  • Senar B, Konucol S, Kruk C, Pandit U (1998) Alkaloids of Amaryllidaceae III. Alkaloids from the bulbs of Pancratium maritimum. Nat Prod Sci 4:148–152

    Google Scholar 

  • Sener B, Orhan I (2005) Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure Appl Chem 77(1):53–64

    Article  CAS  Google Scholar 

  • Sur-Altiner D, Gurkan E, Mutlu G, Tuzlaci E, Ang O (1999) The antifungal activity of Pancratium maritimum. Fitoterapia 70:187–189

    Article  Google Scholar 

  • Tato P, Castedo L, Riguera R (1998) New alkaloids from Pancratium maritimum. Heterocycles 27:2833–2838

    Google Scholar 

  • Torras-Claveria L, Berkov S, Jauregui O, Caujape J, Viladomat F, Codina C, Bastida J (2010) Metabolic profiling of bioactive Pancratium canariense extracts by GC–MS. Phytochem Anal 21(1):80–88

    Article  PubMed  CAS  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Scheper T, Zhong JJ (eds) Advances in biochemical engineering/biotechnology. Plant Cells, Springer, Heidelberg, pp 1–26

Download references

Acknowledgments

This research has been supported by National Science Fund of Bulgaria under contract number TK-B-1605/2006. The authors acknowledge Ivaila Dincheva (AgroBioInstitute) for preforming GC–MS runs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Pavlov.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, V., Ivanov, I., Berkov, S. et al. Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33, 927–933 (2011). https://doi.org/10.1007/s11738-010-0622-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0622-7

Keywords

Navigation