Skip to main content
Log in

Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The leaf protein pattern from drought-tolerant and drought-sensitive wheat varieties subjected to severe soil drought but with the possibility for recover from stress was studied by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The spots representing Rubisco large subunit (RLS) were identified using polyclonal antibodies against Rubisco and immunoblotting. Some qualitative and quantitative differences in the 2D-PAGE protein map of wheat varieties were revealed under drought conditions. Three days recovery of wheat plants were not enough for restoring RLS quantity to the level of controls after 7 days drought, especially in the drought-sensitive variety Miziya. There are contradictory data in the literature concerning increased or diminished RLS level in drought stressed plants. A comparison of RLS after SDS-PAGE and 2D-PAGE was made. The revealed protein pattern depended on the presence or absence of protease inhibitors in the extraction buffer, on the procedure of extraction, and on the degree of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

2D-PAGE:

2-Dimensional polyacrylamide gel electrophoresis

DTT:

1,4-Dithio-dl-threitol

DW:

Dry weight

EDTA:

Ethylenediaminetetraacetic acid

EL:

Electrolyte leakage

FW:

Fresh weight

IEF:

Isoelectric focusing

2-ME:

β-Mercapthoethanol

MM:

Molecular mass

PMSF:

Phenylmethanesulfonyl fluoride

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

RLS:

Rubisco large subunit

RSS:

Rubisco small subunit

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SL:

Shoot length

TCA:

Trichloracetic acid

TW:

Turgor weight

WD:

Water deficit

References

  • Anderson B, Aro E-M (1997) Proteolytic activities and proteases of plant chloroplasts. Physiol Plant 100:780–793. doi:10.1111/j.1399-3054.1997.tb00005.x

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58. doi:10.1080/07352680590910410

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pineiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot (Lond) 89:907–916. doi:10.1093/aob/mcf105

    Article  CAS  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921. doi:10.1093/pcp/pcg118

    Article  CAS  PubMed  Google Scholar 

  • Cohen I, Knopf JA, Irihimaitch V, Shapira M (2005) A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and subunit expression. Plant Physiol 137:738–746. doi:10.1104/pp.104.056341

    Article  CAS  PubMed  Google Scholar 

  • Cohen I, Sapir Y, Shapira M (2006) A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol 141:1089–1097. doi:10.1104/pp.106.079046

    Article  CAS  PubMed  Google Scholar 

  • Damerval C, De Vienne D, Zivy M, Thiellement H (2005) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54. doi:10.1002/elps.1150070108

    Article  Google Scholar 

  • Demirevska K, Simova L, Vassileva V, Feller U (2008) Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regul 56:97–106. doi:10.1007/s10725-008-9288-1

    Article  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova L (1989) Isolation and purification of ribulose-1,5-bisphosphate carboxylase/oxygenase from barley leaves. Bulg J Plant Physiol 15:3–10

    CAS  Google Scholar 

  • Demirevska-Kepova K, Simova L, Kjurkchiev S (1999) Barley leaf Rubisco, Rubisco binding protein and Rubisco activase and their protein/protein interactions. Bulg J Plant Physiol 25(3–4):31–44

    CAS  Google Scholar 

  • Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

    CAS  PubMed  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244. doi:10.1016/0968-0004(79)90212-3

    Article  CAS  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624. doi:10.1093/jxb/erm242

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA, Maurer R (1978) Drought tolerance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res 29:897–912. doi:10.1071/AR9780897

    Article  Google Scholar 

  • Granier F (1988) Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis 9:712–718. doi:10.1002/elps.1150091106

    Article  CAS  PubMed  Google Scholar 

  • Houtz RL, Portis AR Jr (2003) The life of ribulose 1,5-bisphosphate carboxylase/oxygenase—posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158. doi:10.1016/S0003-9861(03)00122-X

    CAS  PubMed  Google Scholar 

  • Inmaculada J, Navarro RM, Lenz C, Ariza D, Jorrin J (2006) Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics 6:S207–S214. doi:10.1002/pmic.200500364

    Article  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) The large subunit of Ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38(4):471–479

    CAS  PubMed  Google Scholar 

  • Islam N, Lonsdale M, Upadhyaya NM, Higgins TJ, Hirano H, Akhurst R (2004) Protein extraction from mature rice leaves for two-dimensional gel electrophoresis and its application in proteome analysis. Proteomics 4:1903–1908. doi:10.1002/pmic.200300816

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Kalapos T, van den Boogaard R, Lambers H (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185:137–149. doi:10.1007/BF02257570

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the heat of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Feller U (1992) Effects of light and external solutes on the catabolism of nuclear-encoded stromal proteins in intact chloroplasts isolated from pea leaves. Plant Physiol 100:2100–2105. doi:10.1104/pp.100.4.2100

    Article  CAS  PubMed  Google Scholar 

  • Pääkkönen E, Vahala J, Pohjolai M, Holopainen T, Kärenlampi L (1998) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21:671–684. doi:10.1046/j.1365-3040.1998.00303.x

    Article  Google Scholar 

  • Pell EJ, Eckardt NA, Glick RE (1993) Biochemical and molecular basis for impairment of photosynthetic potential. Photosynth Res 39:453–462. doi:10.1007/BF00014598

    Article  Google Scholar 

  • Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ 24:123–131. doi:10.1046/j.1365-3040.2001.00665.x

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013

    Article  CAS  Google Scholar 

  • Riccardi F, Gazeau P, Jacquemot M-P, Vincent D, Zivy M (2004) Deciphering genetic variation of proteome responses to water deficit in maize leaves. Plant Physiol Biochem 42:1003–1011. doi:10.1016/j.plaphy.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Benett J (2002a) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145. doi:10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh Gh H, Siopongco J, Wade LJ, Ghareyazie B, Benett J (2002b) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219. doi:10.1016/S0378-4290(02)00040-0

    Article  Google Scholar 

  • Simova-Stoilova L, Vassileva V, Petrova T, Tsenov N, Demirevska K, Feller U (2006) Proteolytic activity in wheat leaves during drought stress and recovery. Gen Appl Plant Physiol Spec Issue 9:1–101

    Google Scholar 

  • Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013–2026. doi:10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375. doi:10.1002/elps.200305500

    Article  CAS  PubMed  Google Scholar 

  • Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci USA 104:6466–6471. doi:10.1073/pnas.0610586104

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Minamikawa T (1996) Successive amino-terminal proteolysis of large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase by vacuolar enzymes from French leaves. Eur J Biochem 238:317–324. doi:10.1111/j.1432-1033.1996.0317z.x

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Komatsu S (2007) A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437. doi:10.1016/j.phytochem.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S (2005) Proteomic changes in rice leaves during development of field-growth rice plants. Proteomics 5:961–972. doi:10.1002/pmic.200401131

    Article  CAS  PubMed  Google Scholar 

  • Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167(1):91–100. doi:10.1016/j.plantsci.2004.03.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Swiss National Science Foundation, SCOPES (project DILPA) and from Ministry of Education and Science of Republic Bulgaria (project CC 1503). The authors are grateful to Dr I. Stancheva for her advices in growing wheat plants in soil and to B. Juperlieva-Mateeva and A. Kostadinova for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klimentina Demirevska.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirevska, K., Zasheva, D., Dimitrov, R. et al. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31, 1129–1138 (2009). https://doi.org/10.1007/s11738-009-0331-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0331-2

Keywords

Navigation