Skip to main content
Log in

Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Selenocysteine methyltransferase (SMT), specifically methylates selenocysteine (SeCys) to produce the nonprotein amino acid Se-methyl selenocysteine (SeMSC) and played key role of removing selenium toxic effect at higher levels to the plant. Here we report the cloning of a cDNA encoding selenocysteine methyltransferase from Camellia sinensis (CsSMT) and expression of CsSMT in Escherichia coli. CsSMT isolated by RT-PCR and RACE-PCR reaction. CsSMT is a 1,401 bp cDNA with an open reading frame predicted to encode a 351 amino acid, 40.5 kDa protein; The predicted amino acid sequences of CsSMT shows 74% identity with A. bisulcatus selenocysteine methyltransferase (AbSMT) and 69% identity with Broccoli (Brassica oleracea var. italica) selenocysteine methyltransferase (BoSMT), and shares 53, 73 and 65% identity, respectively, with Arabidopsis thaliana homocysteine S-methyltransferase AtHMT1, AtHMT2, and AtHMT3, and 65% to Zea mays homocysteine S-methyltransferase (ZmHMT2). Analyses of CsSMT showed that it lacks obvious chloroplast or mitochondrial targeting sequences and contains a consensus sequence of GGCC for a possible zinc-binding motif near the C-terminal and a conserved Cys residue upstream of the zinc-binding motif as other related methyltransferases. Expression of CsSMT correlated with the presence of SMT enzyme activity in cell extracts, and bacteria containing recombinant CsSMT plasmid showed much high tolerance to selenate and selenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AbSMT:

A. bisulcatus selenocysteine methyltransferase

AtHM:

Arabidopsis thaliana homocysteine S-methyltransferase

BoSMT:

Brassica oleracea var. italica selenocysteine methyltransferase

bp:

Base pair

CsSMT:

Camellia sinensis selenocysteine methyltransferase

HMT:

Homocysteine S-methyltransferase

kb:

Kilobase pair(s)

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcription polymerase chain reaction

SeCys:

Selenocysteine

SeMSC:

Se-methyl selenocysteine

SMT:

Selenocysteine methyltransferase

References

  • Ausubel F, Brent R, Kingstone RE, Moore DD, Smith JA, Seidman JG, Struhl K (eds) (1993) Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, New York

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA, Hanson AD (1999) S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium tolerant Astragalus species. Plant Physiol 67:1051–1053

    Article  PubMed  CAS  Google Scholar 

  • Cai XJ, Block E, Uden PC, Zhang X, Quimby BD, Sullivan JJ (1995) Allium chemistry: identification of selenoamino acids in ordinary and selenium-enriched garlic, onion, and broccoli using gas-chromatography with atomic-emission detection. J Agri Food Chem 43:1754–1757

    Article  CAS  Google Scholar 

  • Davis CD, Zeng HW, Finley JW (2002) Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice. J Nutr 132:307–309

    PubMed  CAS  Google Scholar 

  • Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 23:17–40

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  Google Scholar 

  • Finley JW, Davis CD (2001) Selenium (Se) from high-selenium broccoli is utilized differently than selenite, selenate and selenomethionine, but is more effective in inhibiting colon carcinogenesis. Biofactors 14:191–196

    PubMed  CAS  Google Scholar 

  • Finley JW, Davis CD, Feng Y (2000) Selenium from high selenium broccoli protects rats from colon cancer. J Nutr 130:2384–2389

    PubMed  CAS  Google Scholar 

  • Finley JW, Ip C, Lisk DJ, Davis CD, Hiuntze KJ, Whanger PD (2001) Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49:2679–2683

    Article  CAS  Google Scholar 

  • Finley JW, Grusak MA, Keck AS, Gregoire BR (2004) Bioavailability of selenium from meat and broccoli as determined by retention and distribution of 75Se. Biol Trace Elem Res 99:191–209

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Mizuno K, Fujimura T, lrie M., Crozier A, Ashihare H (1999) Purification and characterization of caffeine synthase from tea leaves. Plant Physiol 120:579–586

    Article  PubMed  CAS  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Larsen PR, Berry MJ (1995) Nutritional and hormonal regulation of thyroid hormone deiodinases. Annu Rev Nutr 15:323–352

    Article  PubMed  CAS  Google Scholar 

  • LaVallie ER, DiBlasio EA., Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E.Coli cytoplasm. Biotechnology 11:187–193

    Article  PubMed  CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, deSouza M, Neuhierl B, Böck A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  PubMed  CAS  Google Scholar 

  • Liang LN, Mo SM, Zhang P, Cai YQ, Mou SF, Jiang GB, Wen MJ (2006) Selenium speciation by high-performance anion-exchange chromatography–post-column UV irradiation coupled with atomic fluorescence spectrometry. J Chromatogr A 1118:139–143

    Article  PubMed  CAS  Google Scholar 

  • Lyi SM., Heller LI, Rutzke M, Welch RM., Kochian LV, Li L (2005) Molecular and biochemical Characterization of the Selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in Broccoli. Plant Physiol 138:409–420

    Article  PubMed  CAS  Google Scholar 

  • Medina D, Thompson H, Ganther H, Ip C (2001) Se-methylselenocysteine:a new compound for chemoprevention of breast cancer. Nutr Cancer 40:12–17

    Article  PubMed  CAS  Google Scholar 

  • Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants: Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Article  PubMed  CAS  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F., Böck A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. J Biol Chem 274:5407–5414

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu PE, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Bourgis F, Ziemak MJ, Rhodes D, Gage DA, Hanson AD (2000) Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J Biol Chem 275:5962–5968

    Article  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Hafeman DG, Hoekstra WG (1973) Selenium biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  • Sugihara S, Kondo M, Chihara Y, Yuji M, Hattori H, Yoshida M (2004) Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Biosci Biotechnol Biochem 68:193–199

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci 93:1006–1011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, Key Laboratory of Tea Biochemistry and Biotechnology, Zheng-Zhu Zhang for providing facilities. We thankfully acknowledges the financial support provided by Anhui Provincial Natural Science Foundation, China (grant No.050410102)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Jiang.

Additional information

Communicated by J. Sadowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Jiang, CJ., Deng, WW. et al. Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis . Acta Physiol Plant 30, 167–174 (2008). https://doi.org/10.1007/s11738-007-0105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-007-0105-7

Keywords

Navigation