Skip to main content
Log in

A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The interface between asphalt binder and mineral aggregate directly affects the service life of pavement because the defects and stress concentration occur more easily there. The interaction between asphalt binder and mineral aggregate is the main cause of forming the interface. This paper presents an extensive review on the test technologies and analysis methods of interfacial interaction, including molecular dynamics simulation, phase field approach, absorption tests, rheological methods and macro mechanical tests. All of the studies conducted on this topic clearly indicated that the interfacial interaction between asphalt binder and mineral aggregate is a physical-chemical process, and can be qualitatively characterized by microscopical technique (such as SEM and AFM), and also can be quantitatively evaluated by rheological methods and interfacial mechanical tests. Molecular dynamics simulation and phase field approach were also demonstrated to be effective methods to study the interfacial behavior and its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson D A, Goetz W H. Mechanical Behavior and Reinforcement of Mineral Filler–Asphalt Mixtures. Proc. Association of Asphalt Paving Technologists, 1973, 42: 37–66

    Google Scholar 

  2. Dukatz EL, Anderson DA. The Effect of Various Fillers on the Mechanical Behavior of Asphaltic Concrete. Journal of the Association of Asphalt Paving Technologists, 1980, 49

    Google Scholar 

  3. Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete. Journal of Materials in Civil Engineering, 2009, 21(12): 771–780

    Article  Google Scholar 

  4. Jennings P W, Pribanic J A, Desando M A. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy. Strategic Highway Research Program, National Research Council, Washington DC, 1993: 3–12

    Google Scholar 

  5. Pauli AT, Grimes W, Huang S C. Surface energy studies of SHRP asphalts by AFM. In: The 225th National Meeting of the American-Chemical-Society, New Orleans, Louisiana, 2003, 225: 422

    Google Scholar 

  6. Zhang L, Greenfield M L. Molecular orientation in model asphalts using molecular simulation. Energy & Fuels, 2007, 21(2): 1102–1111

    Article  Google Scholar 

  7. Zhang L, Greenfield M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation. Journal of Chemical Physics, 2007, 127(194502): 1–13

    Google Scholar 

  8. Zhang L, Greenfield M L. Effects of polymer modification on properties and microstructure of model asphalt systems. Energy & Fuels, 2008, 22(5): 3363–3375

    Article  Google Scholar 

  9. Clancy T C, Mattice W L. Computer simulation of polyolefin interfaces. Computational and Theoretical Polymer Science, 1999, 9 (3–4): 261–270

    Article  Google Scholar 

  10. Deng M, Tan V B C, Tay T E. Atomistic modeling: Interfacial diffusion and adhesion of polycarbonate and silanes. Polymer, 2004, 45(18): 6399–6407

    Article  Google Scholar 

  11. Murgich J, Rodríguez M J, Izquierdo A, Carbognani L, Rogel E. Interatomic interactions in the adsorption of asphaltenes and resins on kaolinite calculated by molecular dynamics. Energy & Fuels, 1998, 12(2): 339–343

    Article  Google Scholar 

  12. Norinaga K, Wargardalam V J, Takasugi S, Iino M, Matsukawa S. Measurement of self-diffusion coefficient of asphaltene in pyridine by pulsed field gradient spin-echo H-1NMR. Energy & Fuels, 2001, 15(5): 1317–1318

    Article  Google Scholar 

  13. Andrews A B, Guerra R E, Mullins O C, Sen P N. Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. Journal of Physical Chemistry A, 2006, 110(26): 8093–8097

    Article  Google Scholar 

  14. He L, Li X,Wu G, Lin F, Sui H. Distribution of saturates, aromatics, resins and asphaltenes fractions in the bituminous layer of Athabasca oil sands. Energy & Fuels, 2013, 27(8): 4677–4683

    Article  Google Scholar 

  15. Curtis C W, Ensley K, Epps J. Fundamental properties of asphaltaggregate interactions including adhesion and absorption. SHRP-A-341 National Research Council, Washington, D.C. 1993: 501–527

    Google Scholar 

  16. Scott J A N. Adhesion and disbonding of asphalt used in highway construction and maintenance. Journal of the Association of Asphalt Paving Technologists, 1978, 47: 19–48

    Google Scholar 

  17. Fritschy R, Papirer E. Interactions between bitumen, its components and model fillers. Fuel, 1978, 57(11): 701–704

    Article  Google Scholar 

  18. Ardebrant H, Pugh R J. Surface acidity/basicity of road stone aggregates by adsorption from non-aqueous solutions. Colloids and Surfaces, 1991, 53(1): 101–116

    Article  Google Scholar 

  19. González G, Middea A. Asphaltenes adsorption by quartz and feldspar. Journal of Dispersion Science and Technology, 1987, 8(5–6): 525–548

    Article  Google Scholar 

  20. Acevedo S, Ranaudo M A, Escobar G. Adsorption of asphaltenes and resins on organic and inorganic substrates and their correlation with precipitation problems in production well tubing. Fuel, 1995, 74(4): 595–598

    Article  Google Scholar 

  21. Acevedo S, Castillo J, Fernandez A, Goncalves S, Ranaudo M A. A study of multilayer adsorption of asphaltenes on glass surfaces by photothermal surface deformation. Relation of this adsorption to aggregate formation in solution. Energy & Fuels, 1998, 12(2): 386–390

    Google Scholar 

  22. Abudu A, Goual L. Adsorption of crude oil on surfaces using quartz crystal microbalance with dissipation (QCM-D) under flow conditions. Energy & Fuels, 2009, 23(3): 1237–1248

    Article  Google Scholar 

  23. Ekholm P, Blomberg E, Claesson P, Auflem I H, Sjöblom J, Kornfeldt A. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. Journal of Colloid and Interface Science, 2002, 247(2): 342–350

    Article  Google Scholar 

  24. Goual L, Horváth-Szabó G, Masliyah J H, Xu Z. Adsorption of bituminous components at oil/water interfaces investigated by quartz crystal microbalance: Implications to the stability of water-inoil emulsions. Langmuir, 2005, 21(18): 8278–8289

    Article  Google Scholar 

  25. Balabin R M, Syunyaev R Z. Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study. Journal of Colloid and Interface Science, 2008, 318(2): 167–174

    Article  Google Scholar 

  26. Syunyaev R Z, Balabin R M, Akhatov I S, Safieva J O. Adsorption of petroleum asphaltenes onto reservoir rock sands studied by nearinfrared (NIR) spectroscopy. Energy & Fuels, 2009, 23(3): 1230–1236

    Article  Google Scholar 

  27. Labrador H, Fernandez Y, Tovar J, Muñoz R, Pereira J C. Ellipsometry study of the adsorption of asphaltene films on a glass surface. Energy & Fuels, 2007, 21(3): 1226–1230

    Article  Google Scholar 

  28. Turgman-Cohen S, Smith MB, Fischer D A, Kilpatrick P K, Genzer J. Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes. Langmuir, 2009, 25(11): 6260–6269

    Article  Google Scholar 

  29. Saraji S, Goual L, Piri M. Adsorption of asphaltenes in porous media under flow conditions. Energy & Fuels, 2010, 24(11): 6009–6017

    Article  Google Scholar 

  30. David A. Mechanical behavior of asphalt-mineral powder composites and asphalt-mineral interaction. Lafayette: Doctoral Dissertation of Purdue University, 1971: 166–170

    Google Scholar 

  31. Wu J T. Studies on Interaction Capability of Asphalt and Aggregate Based on Rheological Characteristics. Master’s Thesis, Harbin Institute of Technology. Harbin, 2009: 64–65

    Google Scholar 

  32. Tan Y Q, Guo M. Study on the Phase Behavior of Asphalt Mastic. Construction & Building Materials, 2013, 47: 311–317

    Article  Google Scholar 

  33. Tan Y Q, Guo M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction & Building Materials, 2013, 47: 254–260

    Article  Google Scholar 

  34. Tan Y Q, Guo M. Interfacial Thickness and Interaction between Asphalt and Mineral Fillers. Materials and Structures, 2014, 47(4): 605–614

    Article  Google Scholar 

  35. Guo M, Motamed A, Tan Y Q, Bhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design, 2016, 105: 25–33

    Article  Google Scholar 

  36. Guo M, Tan Y Q, Zhou SW. Multiscale Test Research on Interfacial Adhesion Property of Cold Mix Asphalt. Construction & Building Materials, 2014, 68: 769–776

    Article  Google Scholar 

  37. Zhang J P, Pei J Z, Li Y W. Research on Interaction between Asphalt and Filler based on DSR Test. Advanced Materials Research, 2013, 723: 480–487

    Article  Google Scholar 

  38. Zhang J P, Fan Z P, Hu D L, Hu Z, Pei J Z, Kong W C. Evaluation of asphalt–aggregate interaction based on the rheological properties. International Journal of Pavement Engineering, 2016: 1–7

    Google Scholar 

  39. Miljković M, Radenberg M. Fracture Behaviour of Bitumen Emulsion Mortar Mixtures. Construction & Building Materials, 2014, 62(15): 126–134

    Article  Google Scholar 

  40. Shao X Z, Tan Y Q, Shao M H, Sun L J. Research on Microstructure of Asphalt Mortar. Highway, 2003, 12: 105–108

    Google Scholar 

  41. Tan Y Q, Guo M. Micro-and Nano-characteration of Interaction between Asphalt and Filler. Journal of Testing and Evaluation, 2014, 42(5): 1089–1097

    Article  Google Scholar 

  42. Wang Z J, Sha A M. Micro hardness of interface between cement asphalt emulsion mastics and aggregates. Materials and Structures, 2010, 43(4): 453–461

    Article  Google Scholar 

  43. Khattak M J, Baladi G Y, Drzal L T. Low temperature binderaggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures. Journal of Materials in Civil Engineering, 2007, 19(5): 411–422

    Article  Google Scholar 

  44. Shinhe H, Turner T F, Pauli AT. Evaluation of different techniques for adhesive properties of asphalt-filler systems at interfacial region. Symposium on Advances in Adhesives, Adhesion Science and Testing, Washington D C: ASTM, 2005: 114–128

    Google Scholar 

  45. Richardson C. The theory of the perfect sheet asphalt surface. Journal of Industrial and Engineering Chemistry, 1915, 7(6): 463–465

    Article  Google Scholar 

  46. Miller J S, Traxler R N. Some of the fundamental physical characteristics of mineral filler intended for asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 1932, 3: 53–63

    Google Scholar 

  47. Mitchell J G, Lee A R. The evaluation of fillers for tar and other bituminous surfacing. Journal of the Society of Chemical Industry, 1939, 58: 299–306

    Article  Google Scholar 

  48. Rigden P J. The use of fillers in bituminous road surfacings: A study of filler binder systems in relation to filler characteristics. Journal of the Society of Chemical Industry, 1947, 66(9): 299–309

    Article  Google Scholar 

  49. Shashidhar N, Romero P. Factors affecting the stiffening potential of mineral fillers. Transportation Research Record, 1998, 1638: 94–100

    Article  Google Scholar 

  50. Kallas B F, Puzinauskas V P. A study of mineral fillers in asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 1961, 10: 493–528

    Google Scholar 

  51. Tunnicliff D G. A review of mineral filler. Journal of the Association of Asphalt Paving Technologists, 1962, 31: 118–150

    Google Scholar 

  52. Heukelom W, Wijga P W O. Viscosity of dispersions as governed by concentration and rate of shear. Journal of the Association of Asphalt Paving Technologists, 1971, 40: 418–437

    Google Scholar 

  53. Einstein A. Investigations on the theory of the Brownian movement, edited with notes by R. Furth [M]. United States of America: Dover publications, 1956: 1–19

    MATH  Google Scholar 

  54. Thomas D G. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science, 1965, 20(3): 267–277

    Google Scholar 

  55. Shenoy A V. Rheology of filled polymer systems, Netherlands: Springer 1999: 112–135

    Book  Google Scholar 

  56. Mooney M. The viscosity of a concentrated suspension of spherical particles. Journal of Colloid Science, 1951, 6(2): 162–170

    Article  Google Scholar 

  57. Maron S H, Pierce P E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 1956, 11(1): 80–95

    Article  Google Scholar 

  58. Halpin J C. Effects of environmental factors on composite materials. Technical report AFML-TR-67-423, 1969: 1–13

    Google Scholar 

  59. Ju JW, Chen TM. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mechanica, 1994, 103(1–4): 123–144

    Article  MathSciNet  MATH  Google Scholar 

  60. Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials, 2002, 34(10): 657–669

    Article  Google Scholar 

  61. Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315–330

    Article  MATH  Google Scholar 

  62. Christensen R M, Lo K H. Erratum: Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1986, 34(6): 639

    Article  Google Scholar 

  63. Buttlar WG, Bozkurt D, Al-Khateeb GG, et al. Understanding asphalt mastic behavior through micromechanics. Transportation Research Record: Journal of the Transportation Research Board, 1999, 1681: 157–169

    Article  Google Scholar 

  64. Lipatov Y S, Rosovitsky V F, Babich B V, Kvitka N A. On shift and resolution of relaxation maxima in two phase polymeric systems. Journal of Applied Polymer Science, 1980, 25(6): 1029–1037

    Article  Google Scholar 

  65. Zhu X Y, Yang Z X, Guo X M, Chen W Q. Modulus prediction of asphalt concrete with imperfect bonding between aggregate-asphalt mastic. Composites. Part B, Engineering, 2011, 42(6): 1404–1411

    Article  Google Scholar 

  66. Gong X B. Micro-Meso Mechanical Behavior of Asphalt Mixtures Based on Locally Effective Properties. Master’s Thesis, Harbin Institute of Technology. Harbin, 2012: 68–69

    Google Scholar 

  67. Ribeiro R C, Correia J C G, Seidl P R. The influence of different minerals on the mechanical resistance of asphalt mixtures. Journal of Petroleum Science Engineering, 2009, 65(3–4): 171–174

    Article  Google Scholar 

  68. Mallick R B, Kandhal P S, Bradbury R L. Using warm-mix asphalt technology to incorporate high percentage of reclaimed asphalt pavement material in asphalt mixtures. Transportation Research Record, 2008, 2051: 71–79

    Article  Google Scholar 

  69. Shu X, Huang B S, Shrum E D, Jia X. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction & Building Materials, 2012, 35: 125–130

    Article  Google Scholar 

  70. Guo N S, You Z P, Zhao Y H, Tan Y, Diab A. Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Construction & Building Materials, 2014, 64: 141–149

    Article  Google Scholar 

  71. Zhao S, Huang B S, Shu X, Woods M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction & Building Materials, 2013, 44: 92–100

    Article  Google Scholar 

  72. Hill B, Behnia B, Buttlar W G, Reis H. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement through mechanical performance tests and an acoustic emission approach. Journal of Materials in Civil Engineering, 2013, 25(12): 1887–1897

    Article  Google Scholar 

  73. Mohajeri M, Molenaar A A A, Van de Ven M F C. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Materials and Pavement Design, 2014, 15(2): 372–384

    Article  Google Scholar 

  74. Kuhn C, Muller R. A continuum phase field model for fracture. Engineering Fracture Mechanics, 2010, 77(18): 3625–3634

    Article  Google Scholar 

  75. Henry H, Levine H. Dynamic Instabilities of Fracture under Biaxial Strain Using a Phase Field Model. Physical Review Letters, 2004, 93(10): 105504

    Article  Google Scholar 

  76. Karma A, Lobkovsky A. Unsteady crack motion and branching in a phase-field model of brittle fracture. Physical Review Letters, 2004, 92(24): 245510

    Article  Google Scholar 

  77. Eastgate L, Sethna J, Rauscher M, Cretegny T, Chen C S, Myers C R. Fracture in mode I using a conserved phase-field model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (3): 036117

    Google Scholar 

  78. Schlüter A, Willenbucher A, Kuhn C, Muller R. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 2014, 54(5): 1141–1161

    Article  MathSciNet  MATH  Google Scholar 

  79. Takaishi T, Kimura M. Phase field model for Mode III crack growth in two dimensional elasticity. Kybernetika, 2009, 45(4): 605–614

    MathSciNet  MATH  Google Scholar 

  80. Schänzel L, Hofacker M, Miehe C. Phase Field Modeling of Crack Propagation at Large Strains with Application to Rubbery Polymers. Proceedings in Applied Mathematics and Mechanics, 2011, 11(1): 429–430

    Article  Google Scholar 

  81. Wang Y, Li J. Phase field modeling of defects and deformation. Acta Materialia, 2010, 58(4): 1212–1235

    Article  MathSciNet  Google Scholar 

  82. Song Y C, Soh A K, Ni Y. Phase field simulation of crack tip domain switching in ferroelectrics. Journal of Physics. D, Applied Physics, 2007, 40(4): 1175–1182

    Article  Google Scholar 

  83. Levitas V, Idesman A, Palakala A. Phase-field modeling of fracture in liquid. Journal of Applied Physics, 2011, 110(3): 033531

    Article  Google Scholar 

  84. Xu H, Matkar R, Kyu T. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1): 011804

    Article  Google Scholar 

  85. Abdollahi A, Arias I. Phase-field simulation of anistropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process. Modelling and Simulation in Materials Science and Engineering, 2011, 19(7): 074010

    Article  Google Scholar 

  86. Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691

    Article  Google Scholar 

  87. Hou Y, Yue P, Xin Q, Pauli T, Sun W, Wang L. Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model. Road Materials and Pavement Design, 2014, 15(1): 167–181

    Article  Google Scholar 

  88. Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118

    Article  Google Scholar 

  89. Hou Y, Wang L, Yue P, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015, 48(9): 2997–3008

    Article  Google Scholar 

  90. Hou Y, Sun W, Huang Y, Ayatollahi M, Wang L, Zhang J. Diffuse-Interface Model to Investigate the Asphalt Concrete Cracking Subjected to Shear Loading at a Low Temperature. Journal of Cold Regions Engineering, 2016, 04016009

    Google Scholar 

  91. Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100

    Article  Google Scholar 

  92. Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J. Quasi-brittle Fracture Modeling of PreFlawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering, 2016, 2016: 8751646

    Google Scholar 

  93. Hou Y, Huang Y, Sun F, Guo M. Fractal Analysis on Asphalt Mixture Using a Two-Dimensional Imaging Technique. Advances in Materials Science and Engineering, 2016, 2016: 8931295

    Google Scholar 

Download references

Acknowledgements

This study was supported by Beijing Natural Science Foundation (8174071), China Postdoctoral Science Foundation (2016M-600926) and Fundamental Research Funds for Ceutral University (FRF-TP-16-039A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqiu Tan or Linbing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Tan, Y., Wang, L. et al. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Front. Struct. Civ. Eng. 12, 248–259 (2018). https://doi.org/10.1007/s11709-017-0422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-017-0422-x

Keywords

Navigation