Skip to main content
Log in

Leidenfrost drops on micro/nanostructured surfaces

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first introduced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combining the advantages of both micro- and nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leidenfrost J G. On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153–1166

    Article  Google Scholar 

  2. Hall D D, Mudawar I, Morgan R E, Ehlers S L. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings. Journal of Materials Engineering and Performance, 1997, 6(1): 77–92

    Article  Google Scholar 

  3. Rein M. Interactions between drops and hot surfaces. In: Rein M. Drop-Surface Interactions. Vienna: Springer, 2002, 456: 185–217

    Chapter  Google Scholar 

  4. Vorster WJ J, Schwindt S A, Schupp J, Korsunsky A M. Analysis of the spray field development on a vertical surface during water sprayquenching using a flat spray nozzle. Applied Thermal Engineering, 2009, 29(7): 1406–1416

    Article  Google Scholar 

  5. Zhang Y, Jia M, Liu H, Xie M, Wang T. Investigation of the characteristics of fuel adhesion formed by spray/wall interaction under diesel premixed charge compression ignition (PCCI) relevant conditions. Atomization and Sprays, 2015, 25(11): 933–968

    Article  Google Scholar 

  6. Liang G T, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126

    Article  Google Scholar 

  7. Gottfried B S, Bell K J. Film boiling of spheroidal droplets. Leidenfrost phenomenon. Industrial & Engineering Chemistry Fundamentals, 1966, 5(4): 561–568

    Article  Google Scholar 

  8. Bernardin J D, Mudawar I. The Leidenfrost point: experimental study and assessment of existing models. Journal of Heat Transfer, 1999, 121(4): 894–903

    Article  Google Scholar 

  9. Emmerson G S. The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. International Journal of Heat and Mass Transfer, 1975, 18(3): 381–386

    Article  Google Scholar 

  10. Kandlikar S G, Steinke M E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. International Journal of Heat and Mass Transfer, 2002, 45(18): 3771–3780

    Article  Google Scholar 

  11. Takata Y, Hidaka S, Cao J M, Nakamura T, Yamamoto H, Masuda M, Ito T. Effect of surface wettability on boiling and evaporation. Energy, 2005, 30(2–4): 209–220

    Article  Google Scholar 

  12. Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489(7415): 274–277

    Article  Google Scholar 

  13. Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38(1): 71–99

    Article  Google Scholar 

  14. Bradfield W S. Liquid-solid contact in stable film boiling. Industrial & Engineering Chemistry Fundamentals, 1966, 5(2): 200–204

    Article  Google Scholar 

  15. Kim H, Buongiorno J, Hu L W, McKrell T. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids. International Journal of Heat and Mass Transfer, 2010, 53(7–8): 1542–1553

    Article  Google Scholar 

  16. Zhong L, Guo Z. Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale, 2017, 9(19): 6219–6236

    Article  Google Scholar 

  17. Ko Y S, Chung S H. An experiment on the breakup of impinging droplets on a hot surface. Experiments in Fluids, 1996, 21(2): 118–123

    Article  Google Scholar 

  18. Naber J D, Farrell P V. Hydrodynamics of droplet impingement on a heated surface. SAE Technical Paper, 1993, 930919

    Google Scholar 

  19. Quéré D. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 2013, 45(1): 197–215

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahadevan L, Pomeau Y. Rolling droplets. Physics of Fluids, 1999, 11(9): 2449–2453

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson K L. Contact Mechanics. New York: Cambridge University Press, 1987

    MATH  Google Scholar 

  22. Aussillous P, Quéré D. Properties of liquid marbles. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 973–999

    Article  MATH  Google Scholar 

  23. Gottfried B S, Lee C J, Bell K J. Leidenfrost phenomenon-film boiling of liquid droplets on a flat plate. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167–1188

    Article  Google Scholar 

  24. Avedisian C T, Koplik J. Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces. International Journal of Heat and Mass Transfer, 1987, 30(2): 379–393

    Article  Google Scholar 

  25. Biance A L, Clanet C, Quéré D. Leidenfrost drops. Physics of Fluids, 2003, 15(6): 1632–1637

    Article  MATH  Google Scholar 

  26. Snoeijer J H, Brunet P, Eggers J. Maximum size of drops levitated by an air cushion. Physical Review. E, Statistical, Nonlinear, Biological and Soft Matter Physics 2009, 79(3): 036307

    Article  Google Scholar 

  27. Burton J C, Sharpe A L, van der Veen R C A, Franco A, Nagel S R. Geometry of the vapor layer under a Leidenfrost drop. Physical Review Letters, 2012, 109(7): 074301

    Article  Google Scholar 

  28. Snezhko A, Ben Jacob E, Aranson I S. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets. New Journal of Physics, 2008, 10(4): 043034

    Article  Google Scholar 

  29. Holter N J, Glasscock W R. Vibrations of evaporating liquid drops. Journal of the Acoustical Society of America, 1952, 24(6): 682–686

    Article  Google Scholar 

  30. Paul G, Manna I, Das P K. Formation, growth, and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena. Applied Physics Letters, 2013, 103(8): 084101

    Article  Google Scholar 

  31. Ma X, Liétor-Santos J J, Burton J C. Star-shaped oscillations of Leidenfrost drops. Physical Review Fluids, 2017, 2(3): 031602

    Article  Google Scholar 

  32. Tamura Z, Tanasawa Y. Evaporation and combustion of a drop contacting with a hot surface. Symposium (International) on Combustion, 1958, 7(1): 509–522

    Article  Google Scholar 

  33. Tran T, Staat H J J, Prosperetti A, Sun C, Lohse D. Drop impact on superheated surfaces. Physical Review Letters, 2012, 108(3): 036101

    Article  Google Scholar 

  34. Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, van Houselt A, Gardeniers H, Prosperetti A, Lohse D, Sun C. Droplet impact on superheated micro-structured surfaces. Soft Matter, 2013, 9(12): 3272–3282

    Article  Google Scholar 

  35. Rein M. Drop-surface Interactions. Viena: Springer, 2002

    Book  MATH  Google Scholar 

  36. Yagov V V, Lexin M A, Zabirov A R, Kaban’kov O N. Film boiling of subcooled liquids. Part I: Leidenfrost phenomenon and experimental results for subcooled water. International Journal of Heat and Mass Transfer, 2016, 100: 908–917

    Article  Google Scholar 

  37. Liang G, Mudawar I. Review of spray cooling–Part 2: high temperature boiling regimes and quenching applications. International Journal of Heat and Mass Transfer, 2017, 115: 1206–1222

    Article  Google Scholar 

  38. Baumeister K J, Simon F F. Leidenfrost temperature—its correlation for liquid metals, cryogens, hydrocarbons, and water. Journal of Heat Transfer, 1973, 95(2): 166–173

    Article  Google Scholar 

  39. Liang G, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126

    Article  Google Scholar 

  40. Berenson P J. Film-boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 1961, 83(3): 351–356

    Article  Google Scholar 

  41. Zuber N. On the stability of boiling heat transfer. Transactions of the American Society of Mechanical Engineers, 1958, 80: 711–716

    Google Scholar 

  42. Yao S C, Henry R E. An investigation of the minimum film boiling temperature on horizontal surfaces. Journal of Heat Transfer, 1978, 100(2): 260–267

    Article  Google Scholar 

  43. Spiegler P, Hopenfeld J, Silberberg M, Bumpus C F Jr, Norman A. Onset of stable film boiling and the foam limit. International Journal of Heat and Mass Transfer, 1963, 6(11): 987–989

    Article  Google Scholar 

  44. Schroeder-Richter D, Bartsch G. The Leidenfrost phenomenon caused by a thermo-mechanical effect of transition boiling: a revisited problem of non-equilibrium thermodynamics. Fundamentals of Phase Change: Boiling and Condensation, 1990, 13–20

    Google Scholar 

  45. Olek S, Zvirin Y, Elias E. The relation between the rewetting temperature and the liquid-solid contact angle. International Journal of Heat and Mass Transfer, 1988, 31(4): 898–902

    Article  Google Scholar 

  46. Segev A, Bankoff S G. The role of adsorption in determining the minimum film boiling temperature. International Journal of Heat and Mass Transfer, 1980, 23(5): 637–642

    Article  Google Scholar 

  47. Bernardin J D, Mudawar I. A cavity activation and bubble growth model of the Leidenfrost point. Journal of Heat Transfer, 2002, 124(5): 864–874

    Article  Google Scholar 

  48. Ahn H S, Jo H J, Kang S H, Kim MH. Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Applied Physics Letters, 2011, 98(7): 071908

    Article  Google Scholar 

  49. Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nanostructures. International Journal of Heat and Mass Transfer, 2014, 71(4): 189–196

    Article  Google Scholar 

  50. Bernardin J D, Stebbins C J, Mudawar I. Effects of surface roughness on water droplet impact history and heat transfer regimes. International Journal of Heat and Mass Transfer, 1996, 40(1): 73–88

    Article  Google Scholar 

  51. Bernardin J D, Mudawar I. A Leidenfrost point model for impinging droplets and sprays. Journal of Heat Transfer, 2004, 126(2): 272–278

    Article  Google Scholar 

  52. Elbahri M, Paretkar D, Hirmas K, Jebril S, Adelung R. Anti-lotus effect for nanostructuring at the Leidenfrost temperature. Advanced Materials, 2007, 19(9): 1262–1266

    Article  Google Scholar 

  53. Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface: Part 2—spray cooling. Journal of Heat Transfer, 2003, 125(2): 333–338

    Article  Google Scholar 

  54. Abdalrahman K H M, Sabariman, Specht E. Influence of salt mixture on the heat transfer during spray cooling of hot metals. International Journal of Heat and Mass Transfer, 2014, 78(7): 76–83

    Article  Google Scholar 

  55. Huang C K, Carey V P. The effects of dissolved salt on the Leidenfrost transition. International Journal of Heat and Mass Transfer, 2007, 50(1): 269–282

    Article  MATH  Google Scholar 

  56. Kim H, Truong B, Buongiorno J, Hu L W. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Applied Physics Letters, 2011, 98(8): 083121

    Article  Google Scholar 

  57. Kwon H M, Bird J C, Varanasi K K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Applied Physics Letters, 2013, 103(20): 201601

    Article  Google Scholar 

  58. Feng R, Wu X, Xue Q. Profile characterization and temperature dependence of droplet control on textured surfaces. Chinese Science Bulletin, 2011, 56(18): 1930–1934

    Article  Google Scholar 

  59. Arnaldo del Cerro D, Marín Á G, Römer G R B E, Pathiraj B, Lohse D, Huis in’t Veld A J. Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir, 2012, 28(42): 15106–15110

    Article  Google Scholar 

  60. Park I W, Fernandino M, Dorao C A. Effect of micropillar characteristics on Leidenfrost temperature of impacting droplets. In: Proceedings of ASME 14th International Conference on Nanochannels, Microchannels and Minichannels, Washington, USA, 2016

    Book  Google Scholar 

  61. Hays R, Maynes D, Crockett J. Thermal transport to droplets on heated superhydrophobic substrates. International Journal of Heat and Mass Transfer, 2016, 98: 70–80

    Article  Google Scholar 

  62. Nair H, Staat H J J, Tran T, van Houselt A, Prosperetti A, Lohse D, Sun C. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter, 2014, 10(13): 2102–2109

    Article  Google Scholar 

  63. Weickgenannt C M, Zhang Y, Sinha-Ray S, Roisman I V, Gambaryan-Roisman T, Tropea C, Yarin A L. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics, 2011, 84(3): 036310

    Article  Google Scholar 

  64. Weickgenannt C M, Zhang Y, Lembach A N, Roisman I V, Gambaryan-Roisman T, Yarin A L, Tropea C. Nonisothermal drop impact and evaporation on polymer nanofiber mats. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics, 2011, 83(3): 036305

    Article  Google Scholar 

  65. Sinha-Ray S, Zhang Y, Yarin A L. Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2. Langmuir, 2011, 27(1): 215–226

    Article  Google Scholar 

  66. Kim S H, Ahn H S, Kim J, Kaviany M, Kim M H. Dynamics of water droplet on a heated nanotubes surface. Applied Physics Letters, 2013, 102(23): 233901

    Article  Google Scholar 

  67. Auliano M, Fernandino M, Zhang P, Dorao C A. The Leidenfrost phenomenon on silicon nanowires. In: Proceeding ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, Washington, USA, 2016

    Book  Google Scholar 

  68. Agapov R L, Boreyko J B, Briggs D P, Srijanto B R, Retterer S T, Collier C P, Lavrik N V. Asymmetric wettability of nanostructures directs Leidenfrost droplets. ACS Nano, 2014, 8(1): 860–867

    Article  Google Scholar 

  69. Kruse C, Anderson T, Wilson C, Zuhlke C, Alexander D, Gogos G, Ndao S. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir, 2013, 29(31): 9798–9806

    Article  Google Scholar 

  70. Lee G C, Kang J Y, Park H S, Moriyama K, Kim S H, Kim M H. Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature. Experimental Thermal and Fluid Science, 2017, 84: 156–164

    Article  Google Scholar 

  71. Farokhnia N, Sajadi S M, Irajizad P, Ghasemi H. Decoupled hierarchical structures for suppression of Leidenfrost phenomenon. Langmuir: the ACS Journal of Surfaces & Colloids, 2017, 33(10): 2541–2550

    Article  Google Scholar 

  72. Fatehi M, Kaviany M. Analysis of levitation of saturated liquid droplets on permeable surfaces. International Journal of Heat and Mass Transfer, 1990, 33(5): 983–994

    Article  Google Scholar 

  73. Chabičovský M, Hnízdil M, Tseng A A, Raudenský M. Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures. International Journal of Heat and Mass Transfer, 2015, 88: 236–246

    Article  Google Scholar 

  74. Yu Z, Wang F, Fan L S. Experimental and numerical studies of water droplet impact on a porous surface in the film-boiling regime. Industrial & Engineering Chemistry Research, 2008, 47(23): 9174–9182

    Article  Google Scholar 

  75. Hu H, Xu C, Zhao Y, Shaeffer R, Ziegler K J, Chung J N. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. International Journal of Heat and Mass Transfer, 2015, 80(5): 636–643

    Article  Google Scholar 

  76. Geraldi N R, McHale G, Xu B, Wells G G, Dodd L E, Wood D, Newton M I. Leidenfrost transition temperature for stainless steel meshes. Materials Letters, 2016, 176: 205–208

    Article  Google Scholar 

  77. Sajadi S M, Irajizad P, Kashyap V, Farokhnia N, Ghasemi H. Surfaces for high heat dissipation with no Leidenfrost limit. Applied Physics Letters, 2017, 111(2): 021605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talari, V., Behar, P., Lu, Y. et al. Leidenfrost drops on micro/nanostructured surfaces. Front. Energy 12, 22–42 (2018). https://doi.org/10.1007/s11708-018-0541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0541-7

Keywords

Navigation