Skip to main content
Log in

Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Heteroatom-doping of pristine graphene is an effective route for tailoring new characteristics in terms of catalytic performance which opens up potentials for new applications in energy conversion and storage devices. Nitrogen-doped graphene (N-graphene), for instance, has shown excellent performance in many electrochemical systems involving oxygen reduction reaction (ORR), and more recently glucose oxidation. Owing to the excellent H2O2 sensitivity of N-graphene, the development of highly sensitive and fast-response enzymatic biosensors is made possible. However, a question that needs to be addressed is whether or not improving the anodic response to glucose detection leads to a higher overall performance of enzymatic biofuel cell (eBFC). Thus, here we first synthesized N-graphene via a catalyst-free single-step thermal process, and made use of it as the biocatalyst support in a membraneless eBFC to identify its role in altering the performance characteristics. Our findings demonstrate that the electron accepting nitrogen sites in the graphene structure enhances the electron transfer efficiency between the mediator (redox polymer), redox active site of the enzymes, and electrode surface. Moreover, the best performance in terms of power output and current density of eBFCs was observed when the bioanode was modified with highly doped N-graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen M, Abdellaoui S, Minteer S D. Enzymatic biofuel cells: 30 years of critical advancements. Biosensors & Bioelectronics, 2016, 76: 91–102

    Article  Google Scholar 

  2. Meredith M T, Minteer S D. Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2012, 5(1): 157–179

    Article  Google Scholar 

  3. Yazdi A A, D’Angelo L, Omer N, Windiasti G, Lu X, Xu J. Carbon nanotube modification of microbial fuel cell electrodes. Biosensors & Bioelectronics, 2016, 85: 536–552

    Article  Google Scholar 

  4. Pankratov D, Sundberg R, Sotres J, Maximov I, Graczyk M, Suyatin D B, González-Arribas E, Lipkin A, Montelius L, Shleev S. Transparent and flexible, nanostructured and mediatorless glucose/oxygen enzymatic fuel cells. Journal of Power Sources, 2015, 294: 501–506

    Article  Google Scholar 

  5. Milton R D, Lim K, Hickey D P, Minteer S D. Employing FADdependent glucose dehydrogenase within a glucose/oxygen enzy-matic fuel cell operating in human serum. Bioelectrochemistry (Amsterdam, Netherlands), 2015, 106(Pt A): 56–63

    Article  Google Scholar 

  6. Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015, 5(2): 1400930

    Article  Google Scholar 

  7. Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M. Stretchable biofuel cell with enzyme-modified conductive textiles. Biosensors & Bioelectronics, 2015, 74: 947–952

    Article  Google Scholar 

  8. Neto S A, Milton R D, Hickey D P, Andrade A R D, Minteer S D. Membraneless enzymatic ethanol/O2 fuel cell: transitioning from an air-breathing Pt-based cathode to a bilirubin oxidase-based biocathode. Journal of Power Sources, 2016, 324: 208–214

    Article  Google Scholar 

  9. Qu L, Liu Y, Baek J B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326

    Article  Google Scholar 

  10. Ito Y, Cong W, Fujita T, Tang Z, Chen M. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(7): 2131–2136

    Article  Google Scholar 

  11. Lin Z, Waller G H, Liu Y, Liu M, Wong C P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2013, 53: 130–136

    Article  Google Scholar 

  12. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794

    Article  Google Scholar 

  13. Wang Y, Shao Y, Matson D W, Li J, Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 2010, 4(4): 1790–1798

    Article  Google Scholar 

  14. Thomas T J, Ponnusamy K E, Chang N M, Galmore K, Minteer S D. Effects of annealing on mixture-cast membranes of Nafion® and quaternary ammonium bromide salts. Journal of Membrane Science, 2003, 213(1–2): 55–66

    Article  Google Scholar 

  15. Akers N L, Moore C M, Minteer S D. Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/ Nafion membranes to immobilize dehydrogenase enzymes. Electrochimica Acta, 2005, 50(12): 2521–2525

    Article  Google Scholar 

  16. Dawn A, Shiraki T, Haraguchi S, Sato H, Sada K, Shinkai S. Transcription of chirality in the organogel systems dictates the enantiodifferentiating photodimerization of substituted anthracene. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(12): 3676–3689

    Google Scholar 

  17. Minson M, Meredith MT, Shrier A, Giroud F, Hickey D, Glatzhofer D T, Minteer S D. High performance glucose/O2 biofuel cell: effect of utilizing purified laccase with anthracene-modified multi-walled carbon nanotubes. Journal of the Electrochemical Society, 2012, 159 (12): G166–G170

    Article  Google Scholar 

  18. Milton R D, Giroud F, Thumser A E, Minteer S D, Slade R C T. Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chemical Communications, 2014, 50(1): 94–96

    Article  Google Scholar 

  19. Merchant S A, Tran T O, Meredith M T, Cline T C, Glatzhofer D T, Schmidtke D W. High-sensitivity amperometric biosensors based on ferrocene-modified linear poly(ethylenimine). Langmuir, 2009, 25 (13): 7736–7742

    Article  Google Scholar 

  20. Merchant S A, Meredith MT, Tran T O, Brunski D B, Johnson MB, Glatzhofer D T, Schmidtke D W. Effect of mediator spacing on electrochemical and enzymatic response of ferrocene redox polymers. Journal of Physical Chemistry C, 2010, 114(26): 11627–11634

    Article  Google Scholar 

  21. Milton R D, Giroud F, Thumser A E, Minteer S D, Slade R C T. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Physical Chemistry Chemical Physics, 2013, 15(44): 19371–19379

    Article  Google Scholar 

  22. Meredith M T, Kao D Y, Hickey D, Schmidtke D W, Glatzhofer D T. High current density ferrocene-modified linear poly(ethylenimine) bioanodes and their use in biofuel cells. Journal of the Electrochemical Society, 2011, 158(2): B166–B174

    Article  Google Scholar 

  23. Lin Z, Song M K, Ding Y, Liu Y, Liu M, Wong C P. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2012, 14(10): 3381–3387

    Article  Google Scholar 

  24. Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358

    Article  Google Scholar 

  25. Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215

    Article  Google Scholar 

  26. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Defect graphene as a trifunctional catalyst for electrochemical reactions. Advanced Materials, 2016, 28(43): 9532–9538

    Article  Google Scholar 

  27. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of Ndoped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758

    Article  Google Scholar 

  28. Karyakin A A. Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis, 2001, 13(10): 813–819

    Article  Google Scholar 

  29. Zhao W, Xu J J, Shi C G, Chen H Y. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir, 2005, 21(21): 9630–9634

    Article  Google Scholar 

  30. Karyakin A A, Gitelmacher O V, Karyakina E E. Prussian bluebased first-generation biosensor. A sensitive amperometric electrode for glucose. Analytical Chemistry, 1995, 67(14): 2419–2423

    Google Scholar 

  31. Yazdi A A, Preite R, Milton R D, Hickey D P, Minteer S D, Xu J. Rechargeable membraneless glucose biobattery: towards solid-state cathodes for implantable enzymatic devices. Journal of Power Sources, 2017, 343: 103–108

    Article  Google Scholar 

Download references

Acknowledgement

We highly thank Dr. Shelley D. Minteer and Dr. David P. Hickey (University of Utah) and Dr. Ross D. Milton (Stanford University) for kindly providing us with An-MWCNT and for their guidelines and support. This work also made use of instruments in the Electron Microscopy Service (EMS), at the Research Resources Center, University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian Yazdi, A., Xu, J. Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell. Front. Energy 12, 233–238 (2018). https://doi.org/10.1007/s11708-018-0529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0529-3

Keywords

Navigation