Skip to main content
Log in

Hydrogen production from water splitting on CdS-based photocatalysts using solar light

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Hydrogen energy has been regarded as the most promising energy resource in the near future due to that it is a clean and sustainable energy. And the heterogeneous photocatalytic hydrogen production is increasingly becoming a research hotspot around the world today. As visible light response photocatalysts for hydrogen production, cadmium sulfide (CdS) is the most representative material, the research of which is of continuing popularity. In the past several years, there has been significant progress in water splitting on CdS-based photocatalysts using solar light, especially in the development of co-catalysts. In this paper, recent researches into photocatalytic water splitting on CdS-based photocatalysts are reviewed, including controllable synthesis of CdS, modifications with different kinds of cocatalysts, solid solution, intercalated with layered nanocomposites and metal oxides, and hybrids with graphenes etc. Finally, the problems and future challenges in photocatalytic water splitting on CdS-based photocatalysts are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  Google Scholar 

  2. Shangguan W F. Progress in hydrogen production from water splitting using solar light. Chinese Journal of Inorganic Chemistry, 2001, 17(5): 619–624

    Google Scholar 

  3. Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. Onestep synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano, 2007, 1(4): 273–278

    Article  Google Scholar 

  4. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Applied Materials & Interfaces, 2009, 1(5): 1140–1143

    Article  Google Scholar 

  5. Weng C C, Hsu K F, Wei K H. Synthesis of arrayed TiO2 needlelike nanostructures via a polystyrene-block-poly (4-vinylpyridine) diblock copolymer template. Chemistry of Materials, 2004, 16(21): 4080–4086

    Article  Google Scholar 

  6. Wang H Q, Wu Z B, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2. Journal of Physical Chemistry C, 2009, 113(30): 13317–13324

    Article  Google Scholar 

  7. Wang D A, Liu Y, Wang C W, Zhou F, Liu W M. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. ACS Nano, 2009, 3(5): 1249–1257

    Article  Google Scholar 

  8. Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2 − x Nx powders. Journal of Physical Chemistry B, 2003, 107(23): 5483–5486

    Article  Google Scholar 

  9. Khan S U, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245

    Article  Google Scholar 

  10. Yan H J, Yang J H, Ma G J, Wua G P, Zong X, Lei Z B, Shi J Y, Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalys. Journal of Catalysis, 2009, 266(2): 165–168

    Article  Google Scholar 

  11. Maeda K, Saito N, Lu D, Inoue Y, Domen K. Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting. Journal of Physical Chemistry C, 2007, 111(12): 4749–4755

    Article  Google Scholar 

  12. Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today, 2003, 78(1–4): 555–560

    Article  Google Scholar 

  13. Ohmori T, Mametsuka H, Suzuki E. Photocatalytic hydrogen evolution on InP suspension with inorganic sacricial reducing agent. International Journal of Hydrogen Energy, 2000, 25(10): 953–955

    Article  Google Scholar 

  14. Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society, 2003, 125(10): 3082–3089

    Article  Google Scholar 

  15. Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A. The relationship between photocatalytic activity and crystal structure in strontium tantalates. Journal of Catalysis, 2005, 232(1): 102–107

    Article  Google Scholar 

  16. Domen K, Kudo A, Tanaka A, Onishi T. Overall photodecomposition of water on a layered niobiate catalyst. Catalysis Today, 1990, 8(1): 77–84

    Article  Google Scholar 

  17. Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003, 373(1–2): 191–196

    Article  Google Scholar 

  18. Zou Z G, Ye J H, Arakawa H. Role of R in Bi2RNbO7 (R = Y, Rare Earth): Effect on band structure and photocatalytic properties. Journal of Physical Chemistry, 2002, 106(3): 517–520

    Google Scholar 

  19. Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature, 2006, 440(7082): 295

    Article  Google Scholar 

  20. Wang X C, Maeda K, Lee Y, Domen K. Enhancement of photocatalytic activity of (Zn1 + xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008, 457(1–3): 134–136

    Article  Google Scholar 

  21. Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1 − x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society, 2004, 126(41): 13406–13413

    Article  Google Scholar 

  22. Liu H, Yuan J, Shangguan WF, Teraoka Y. Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. Journal of Physical Chemistry C, 2008, 112(23): 8521–8523

    Article  Google Scholar 

  23. Shangguan W F. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81

    Article  Google Scholar 

  24. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

    Article  Google Scholar 

  25. Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920

    Article  Google Scholar 

  26. Sathish M, Viswanathan B, Viswanath R P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for watersplitting. International Journal of Hydrogen Energy, 2006, 31(7): 891–898

    Article  Google Scholar 

  27. Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Giersig M, Diaz R, Liz-Marzán L M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silicashell spacer. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(4): 415–420

    Article  Google Scholar 

  28. Liu J K, Luo C X, Yang X H, Zhang X Y. Ultrasonic-template method synthesis of CdS hollow nanoparticle chains. Materials Letters, 2009, 63(1): 124–126

    Article  Google Scholar 

  29. Wang X L, Feng Z C, Fan D Y, Fan F T, Li C. Shape-controlled synthesis of CdS nanostructures via a solvothermal method. Crystal & Growth Design, 2010, 12(12): 5312–5318

    Article  Google Scholar 

  30. Yang X H, Wu Q S, Li L, Ding Y P, Zhang G X. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloid and Surfaces A. Physicochemical and Engineering Aspects, 2005, 264(1–3): 172–178

    Article  Google Scholar 

  31. Li C L, Yuan J, Han B Y, Shangguan W F. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 2011, 36(7): 4271–4279

    Article  Google Scholar 

  32. Bao N Z, Shen L M, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117

    Article  Google Scholar 

  33. Yu J G, Zhang J, Jaronic M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1 − x CdxS solid solution. Green Chemistry, 2010, 12(9): 1611–1614

    Article  Google Scholar 

  34. Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. Journal of Physical Chemistry C, 2007, 111(47): 17527–17534

    Article  Google Scholar 

  35. Borgarello E, Kalyanasundaram K, Gratzel M. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2. Helvetica Chimica Acta, 1982, 65(1): 243–248

    Article  Google Scholar 

  36. Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. Interfacial charge carrier dynamics in core shell Au-CdS nanocrystals. Journal of Physical Chemistry C, 2010, 114(26): 11414–11420

    Article  Google Scholar 

  37. Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290: 151–157

    Article  Google Scholar 

  38. Shangguan W F. Hydrogen evolution from water splitting on Nanocomposite photocatalysts. Science and Technology of Advanced Materials, 2007, 8(1,2): 76–81

    Article  Google Scholar 

  39. Luo M, Liu Y, Hu J C, Liu H, Li J L. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Applied Materials & Interfaces, 2012, 4(3): 1813–1821

    Article  Google Scholar 

  40. Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. Journal of Physical Chemistry C, 2010, 114(25): 11215–11220

    Article  Google Scholar 

  41. Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(24): 12202–12208

    Article  Google Scholar 

  42. Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. Journal of Physical Chemistry C, 2010, 114(4): 1963–1968

    Article  Google Scholar 

  43. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and IO3 /I shuttle redox mediator under visible light irradiation. Chemical Communications (Cambridge), 2001, (23): 2416–2417

  44. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004, 33(10): 1348–1349

    Article  Google Scholar 

  45. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Zscheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials, 2006, 5(10): 782–786

    Article  Google Scholar 

  46. Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. Journal of Physical Chemistry B, 2002, 106(47): 12227–12230

    Article  Google Scholar 

  47. Sato T, Masaki K, Sato K, Fujishiro Y, Okuwaki A. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 339–344

    Article  Google Scholar 

  48. Sato T, Sato K, Fujishiro Y, Yoshioka T, Okuwaki A. Photochemical reduction of nitrate to ammonia using layered hydrous Titanate/Cadmium sulphide nanocomposites. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1996, 67(4): 345–349

    Article  Google Scholar 

  49. Shangguan WF, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Solar Energy Materials and Solar Cells, 2001, 69(2): 189–194

    Article  Google Scholar 

  50. Gao X F, Sun W T, Hu Z D, Ai G, Zhang Y L, Feng S, Li F, Peng L M. Hu Z-D, Ai G, Zhang Y-L, Feng S, Li F, Peng L-M. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. Journal of Physical Chemistry C, 2009, 113(47): 20481–20485

    Article  Google Scholar 

  51. Barpuzary D, Khan Z, Vinothkumar N, De M, Qureshi M. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation. Journal of Physical Chemistry C, 2012, 116(1): 150–156

    Article  Google Scholar 

  52. Wang L, Wei H W, Fan Y J, Gu X, Zhan J H. One-dimensional CdS/r-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. Journal of Physical Chemistry C, 2009, 113(32): 14119–14125

    Article  Google Scholar 

  53. Li C L, Yuan J, Han B Y, Jiang L, Shangguan WF. TiO2 Nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(13): 7073–7079

    Article  Google Scholar 

  54. Xing C J, Zhang Y J, Yan W, Guo L J. Band structure-controlled solid solution of Cd1 − x ZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2006, 31(14): 2018–2024

    Article  Google Scholar 

  55. Kimi M, Yuliati L, Shamsuddin M. Photocatalytic hydrogen production under visible light over Cd0.1SnxZn09 − 2x S solid solution photocatalysts. International Journal of Hydrogen Energy, 2011, 36(16): 9453–9461

    Article  Google Scholar 

  56. Ikeue K, Shiiba S, Machida M. Novel Visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chemistry of Materials, 2010, 22(3): 743–745

    Article  Google Scholar 

  57. Xie S L, Lu X H, Zhai T, Gan J Y, Li W, Xu M, Yu M H, Zhang Y M, Tong Y X. Controllable synthesis of ZnxCd1 − x S@ZnO coreshell nanorods with enhanced photocatalytic activity. Langmuir, 2012, 28(28): 10558–10564

    Article  Google Scholar 

  58. Zhang J, Yu J G, Jaroniec M, Gong J R. Noble metal-free reduced graphene oxide-ZnxCd1 − x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Letters, 2012, 12(9): 4584–4589

    Article  Google Scholar 

  59. Gao P, Liu J C, Lee S, Zhang T, Sun D D. High quality graphene oxide-CdS-Pt nanocomposites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2012, 22(5): 2292–2298

    Article  Google Scholar 

  60. Lee H, Heo K, Maaroof A, Park Y, Noh S, Park J, Jian J, Lee C, Seong M J, Hong S. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures. Small, 2012, 8(11): 1650–1656

    Article  Google Scholar 

  61. Jia L, Wang D H, Huang Y X, Xu A W, Yu H Q. Highly durable Ndoped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. Journal of Physical Chemistry C, 2011, 115(23): 11466–11473

    Article  Google Scholar 

  62. Gao Z Y, Liu N, Wu D P, Tao W Q, Xu F, Jiang K. Graphene-CdS composite, synthesis and enhanced photocatalytic activity. Applied Surface Science, 2012, 258(7): 2473–2478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Shangguan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Shangguan, W. Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front. Energy 7, 111–118 (2013). https://doi.org/10.1007/s11708-012-0228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-012-0228-4

Keywords

Navigation