Skip to main content
Log in

Hyperspectral image classification based on volumetric texture and dimensionality reduction

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) bandclustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelo N P, Haertel V (2003). On the application of Gabor filtering in supervised image classification. Int J Remote Sens, 24(10): 2167–2189

    Article  Google Scholar 

  • Benediktsson J A, Palmason J A, Sveinsson J R (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Rem Sens, 43(3): 480–491

    Article  Google Scholar 

  • Bernabe S, Marpu P R, Plaza A, Mura M D, Benediktsson J A (2014). Spectral-spatial classification of multispectral images using kernel feature space representation. IEEE Geosci Remote Sens Lett, 11(1): 288–292

    Article  Google Scholar 

  • Chang C I (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification. New York: Kluwer Academic/Plenum Publishers, 13–15

    Book  Google Scholar 

  • Chang C I (2013). Hyperspectral Data Processing: Algorithm Design and Analysis. New Jersey: Wiley-Interscience, 1–5

    Book  Google Scholar 

  • Chen C, Li W, Tramel E W, Cui M, Prasad S, Fowler J E (2014a). Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1047–1059

    Article  Google Scholar 

  • Chen C, Li W, Tramel E W, Fowler J E (2014b). Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction. IEEE Trans Geosci Rem Sens, 52(1): 365–374

    Article  Google Scholar 

  • Gamba P, Dell’ Acqua F, Lisini G, Trianni G (2007). Improved VHR urban area mapping exploiting object boundaries. IEEE Trans Geosci Rem Sens, 45(8): 2676–2682

    Article  Google Scholar 

  • Haralick R M, Shanmugam K, Dinstein I H (1973). Texture features for image classification. IEEE Trans Syst Man Cybern, 3(6): 610–621

    Article  Google Scholar 

  • Huang X, Zhang L, Gong W (2011). Information fusion of aerial images and LIDAR data in urban areas: vector stacking, re-classification, and post-processing approaches. Int J Remote Sens, 32(1): 69–84

    Article  Google Scholar 

  • Jackson Q, Landgrebe D (2002). Adaptive bayesian contextual classification based on markov random fields. IEEE Trans Geosci Rem Sens, 40(11): 2454–2463

    Article  Google Scholar 

  • Li J, Bioucas-Dias J, Plaza A (2012). Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans Geosci Rem Sens, 50(3): 809–823

    Article  Google Scholar 

  • Liu K, Du Q, Yang H, Ma B (2010). Optical flow and principle component analysis-based motion detection in outdoor videos. EURASIP J Adv Signal Process, 2010: 680623

    Google Scholar 

  • Liu K, Ma B, Du Q, Chen G (2012). Fast motion detection from airborne videos using graphics processing units. J Appl Remote Sens, 6(1): 061505

    Article  Google Scholar 

  • Marceau D J, Howarth P J, Dubois J M, Gratton D J (1990). Evaluation of the grey-level co-occurrence matrix method, for land-cover classification using SPOT imagery. IEEE Trans Geosci Rem Sens, 28(4): 513–519

    Article  Google Scholar 

  • Mokji M M, Bakar S A R A (2007). Adaptive thresholding based on cooccurrence matrix edge information. Journal of Computers, 2(8): 44–52

    Article  Google Scholar 

  • Mura M D, Villa A, Benediktsson J A, Chanussot J, Bruzzone L (2011). Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci Remote Sens Lett, 8(3): 541–545

    Google Scholar 

  • Nyoungui A N, Tonye E, Akono A (2002). Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images. Int J Remote Sens, 23(9): 1895–1925

    Article  Google Scholar 

  • Plaza J, Plaza A, Barra C (2009). Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines. Sensors (Basel Switzerland), 9(1): 196–218

    Article  Google Scholar 

  • Rahman A F, Gamon J A, Sims D A, Schmidts M (2003). Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland. Remote Sens Environ, 84(2): 192–207

    Article  Google Scholar 

  • Rajadell O, Garcia-Sevilla P, Pla F (2013). Spectral-spatial pixel characterization using gabor filters for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 10(4): 860–864

    Article  Google Scholar 

  • Su H, Du Q (2012). Hyperspectral band clustering and band selection for urban land cover classification. Geocarto Int, 27(5): 395–411

    Article  Google Scholar 

  • Su H, Sheng Y, Du P, Liu K (2012). Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection. Appl Opt, 51(14): 2656–2663

    Article  Google Scholar 

  • Su H, Yang H, Du Q, Sheng Y (2011). Semi-supervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett, 8(6): 1135–1139

    Article  Google Scholar 

  • Tsai F, Chang C K, Rau J Y, Lin T H, Liu G R (2007). 3D computation of gray level co-occurrence in hyperspectral image cubes. Lect Notes Comput Sci, 4679: 429–440

    Article  Google Scholar 

  • Yang H, Du Q, Su H, Sheng Y (2011). An efficient method for supervised hyperspectral band selection. IEEE Geosci Remote Sens Lett, 8(1): 138–142

    Article  Google Scholar 

  • Yang H, Ma B, Du Q, Yang C (2010). Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information. J Appl Remote Sens, 4(1): 041890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Sheng, Y., Du, P. et al. Hyperspectral image classification based on volumetric texture and dimensionality reduction. Front. Earth Sci. 9, 225–236 (2015). https://doi.org/10.1007/s11707-014-0473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0473-4

Keywords

Navigation