Skip to main content
Log in

Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A glucose-mediated drug delivery system would be highly satisfactory for diabetes diagnosis since it can intelligently release drug based on blood glucose levels. Herein, a glucose-responsive drug delivery system by integrating glucose-responsive poly(3-acrylamidophenylboronic acid) (PAPBA) functionalized hollow mesoporous silica nanoparticles (HMSNs) with transcutaneous microneedles (MNs) has been designed. The grafted PAPBA serves as gatekeeper to prevent drug release from HMSNs at normoglycemic levels. In contrast, faster drug release is detected at a typical hyperglycemic level, which is due to the change of hydrophilicity of PAPBA at high glucose concentration. After transdermal administration to diabetic rats, an effective hypoglycemic effect is achieved compared with that of subcutaneous injection. These observations indicate that the designed glucose-responsive drug delivery system has a potential application in diabetes treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogurtsova K, da Rocha Fernandes J D, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 2017, 128: 40–50

    Article  CAS  Google Scholar 

  2. Tuomi T, Santoro N, Caprio S, et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet, 2014, 383(9922): 1084–1094

    Article  Google Scholar 

  3. Owens D R, Zinman B, Bolli G B. Insulins today and beyond. Lancet, 2001, 358(9283): 739–746

    Article  CAS  Google Scholar 

  4. Al Hayek A A, Robert A A, Al Dawish M A. Skin-related complications among adolescents with type 1 diabetes using insulin pump therapy. Clinical Medicine Insights: Endocrinology and Diabetes, 2018, 11: 1–5

    Google Scholar 

  5. Chantelau E, Spraul M, Mühlhauser I, et al. Long-term safety, efficacy and side-effects of continuous subcutaneous insulin infusion treatment for type 1 (insulin-dependent) diabetes mellitus: a one center experience. Diabetologia, 1989, 32(7): 421–426

    Article  CAS  Google Scholar 

  6. Asche C V, Shane-McWhorter L, Raparla S. Health economics and compliance of vials/syringes versus pen devices: a review of the evidence. Diabetes Technology & Therapeutics, 2010, 12(S1): S101–S108

    Article  Google Scholar 

  7. Derraik J G B, Rademaker M, Cutfield W S, et al. Poorer glycaemic control is associated with increased skin thickness at injection sites in children with type 1 diabetes. International Journal of Pediatric Endocrinology, 2014, 2014(1): 2

    Article  Google Scholar 

  8. Fuchs J, Hovorka R. Closed-loop control in insulin pumps for type-1 diabetes mellitus: safety and efficacy. Expert Review of Medical Devices, 2020, 17(7): 707–720

    Article  CAS  Google Scholar 

  9. Musolino G, Dovc K, Boughton C K, et al. Reduced burden of diabetes and improved quality of life: Experiences from unrestricted day-and-night hybrid closed-loop use in very young children with type 1 diabetes. Pediatric Diabetes, 2019, 20(6): 794–799

    Google Scholar 

  10. Croissant J G, Fatieiev Y, Khashab N M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Advanced Materials, 2017, 29(9): 1604634

    Article  Google Scholar 

  11. Li Z, Barnes J C, Bosoy A, et al. Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 2012, 41(7): 2590–2605

    Article  CAS  Google Scholar 

  12. Yang K Y, Glemza R, Jarowski C I. Effects of amorphous silicon dioxides on drug dissolution. Journal of Pharmaceutical Sciences, 1979, 68(5): 560–565

    Article  CAS  Google Scholar 

  13. Zhu J, Niu Y, Li Y, et al. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(7): 1339–1352

    Article  CAS  Google Scholar 

  14. Choi Y, Lee J E, Lee J H, et al. A biodegradation study of SBA-15 microparticles in simulated body fluid and in vivo. Langmuir, 2015, 31(23): 6457–6462

    Article  CAS  Google Scholar 

  15. Chen Y, Chen H R, Shi J L. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silicaetching chemistry: Principles, synthesis, and applications. Accounts of Chemical Research, 2014, 47(1): 125–137

    Article  CAS  Google Scholar 

  16. Jia X, He D G, Zhang A M, et al. DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for nearinfrared-responsive synergistic chemo-photothermal treatment of cancer cells. ACS Applied Nano Materials, 2018, 1(7): 3486–3497

    Article  Google Scholar 

  17. Li Y, Li N, Pan W, et al. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Applied Materials & Interfaces, 2017, 9(3): 2123–2129

    Article  CAS  Google Scholar 

  18. Shen J, Song G, An M, et al. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials, 2014, 35(1): 316–326

    Article  CAS  Google Scholar 

  19. Zhang K, Chen H, Zheng Y, et al. A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs. Journal of Materials Chemistry, 2012, 22(25): 12553–12561

    Article  CAS  Google Scholar 

  20. Wang X, Zhou L, Liu Y, et al. Transformation from single-mesoporous to dual-mesoporous organosilica nanoparticles. Nanoscale, 2017, 9(19): 6362–6369

    Article  CAS  Google Scholar 

  21. Prajapati R, Gontsarik M, Yaghmur A, et al. pH-responsive nano-self-assemblies of the anticancer drug 2-hydroxyoleic acid. Langmuir, 2019, 35(24): 7954–7961

    Article  CAS  Google Scholar 

  22. Zohreh N, Alipour S, Hosseini S H, et al. Natural salep/PEGylated chitosan double layer toward a more sustainable pH-responsive magnetite nanocarrier for targeted delivery of DOX and hyperthermia application. ACS Applied Nano Materials, 2019, 2(2): 853–866

    Article  CAS  Google Scholar 

  23. He D, He X, Wang K, et al. Reversible stimuli-responsive controlled release using mesoporous silica nanoparticles functionalized with a smart DNA molecule-gated switch. Journal of Materials Chemistry, 2012, 22(29): 14715–14721

    Article  CAS  Google Scholar 

  24. Du M, Chen Y, Tu J, et al. Ultrasound responsive magnetic mesoporous silica nanoparticle-loaded microbubbles for efficient gene delivery. ACS Biomaterials Science & Engineering, 2020, 6(5): 2904–2912

    Article  CAS  Google Scholar 

  25. Lai J, Mu X, Xu Y, et al. Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chemical Communications, 2010, 46(39): 7370–7372

    Article  CAS  Google Scholar 

  26. Huang P, Zeng B, Mai Z, et al. Novel drug delivery nanosystems based on out-inside bifunctionalized mesoporous silica yolk-shell magnetic nanostars used as nanocarriers for curcumin. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(1): 46–56

    Article  CAS  Google Scholar 

  27. Kim H, Kang Y J, Kang S, et al. Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. Journal of the American Chemical Society, 2012, 134(9): 4030–4033

    Article  CAS  Google Scholar 

  28. Oroval M, Díez P, Aznar E, et al. Self-regulated glucose-sensitive neoglycoenzyme-capped mesoporous silica nanoparticles for insulin delivery. Chemistry, 2017, 23(6): 1353–1360

    Article  CAS  Google Scholar 

  29. Wu Q, Wang L, Yu H, et al. Organization of glucose-responsive systems and their properties. Chemical Reviews, 2011, 111(12): 7855–7875

    Article  CAS  Google Scholar 

  30. Yan J, Fang H, Wang B. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Medicinal Research Reviews, 2005, 25(5): 490–520

    Article  CAS  Google Scholar 

  31. Zhang G, Zhang X, Shen H, et al. Smarter glucose-sensitivity of polymeric micelles formed from phenylborate ester-co-pyrenylboronic ester for insulin delivery at physiological pH. RSC Advances, 2014, 4(91): 49964–49973

    Article  CAS  Google Scholar 

  32. Mo R, Jiang T, Di J, et al. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 2014, 43(10): 3595–3629

    Article  CAS  Google Scholar 

  33. Yu W, Jiang G, Liu D, et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Materials Science and Engineering C, 2017, 73: 425–428

    Article  CAS  Google Scholar 

  34. Hu Z, Meduri C S, Ingrole R S J, et al. Solid and hollow metallic glass microneedles for transdermal drug-delivery. Applied Physics Letters, 2020, 116(20): 203703

    Article  CAS  Google Scholar 

  35. Jayaneththi V R, Aw K, Sharma M, et al. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: Preclinical device development. Sensors and Actuators B: Chemical, 2019, 297: 126708

    Article  CAS  Google Scholar 

  36. Kim D, Kim H, Lee P C W, et al. Universally applicable RNA membrane-based microneedle system for transdermal drug delivery. Materials Horizons, 2020, 7(5): 1317–1326

    Article  CAS  Google Scholar 

  37. Chen J, Cheng P, Sun C, et al. A minimally invasive hollow microneedle with a cladding structure: Ultra-thin but strong, batch manufacturable. IEEE Transactions on Biomedical Engineering, 2019, 66(12): 3480–3485

    Article  Google Scholar 

  38. Waghule T, Singhvi G, Dubey S K, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine and Pharmacotherapy, 2019, 109: 1249–1258

    Article  CAS  Google Scholar 

  39. Tong Z, Zhou J, Zhong J, et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Applied Materials & Interfaces, 2018, 10(23): 20014–20024

    Article  CAS  Google Scholar 

  40. Ingrole R S J, Gill H S. Microneedle coating methods: A review with a perspective. The Journal of Pharmacology and Experimental Therapeutics, 2019, 370(3): 555–569

    Article  CAS  Google Scholar 

  41. Sun W, Araci Z, Inayathullah M, et al. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications. Acta Biomaterialia, 2013, 9(8): 7767–7774

    Article  CAS  Google Scholar 

  42. Yang S, Wu F, Liu J, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Advanced Functional Materials, 2015, 25(29): 4633–4641

    Article  CAS  Google Scholar 

  43. Yu W, Jiang G, Liu D, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Materials Science and Engineering C, 2017, 71: 725–734

    Article  CAS  Google Scholar 

  44. Yu W, Jiang G, Zhang Y, et al. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Materials Science and Engineering C, 2017, 80: 187–196

    Article  CAS  Google Scholar 

  45. Wang J, Ye Y, Yu J, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473

    Article  CAS  Google Scholar 

  46. Zhang Y, Wang J, Yu J, et al. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small, 2018, 14(14): 1704181

    Article  Google Scholar 

  47. Wang J, Ye Y, Yu J, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473

    Article  CAS  Google Scholar 

  48. Zhang J, Lu S F, Zhu H J, et al. Amino-functionalized mesoporous silica based polyethersuflone-polyvinylpyrrolidone composite membrane for elevated temperature fuel cells. ECS Transactions, 2016, 75(14): 581–588

    Article  CAS  Google Scholar 

  49. Jin Y, Song Y, Zhu X, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials, 2012, 33(5): 1573–1582

    Article  CAS  Google Scholar 

  50. Reed M J, Meszaros K, Entes L J, et al. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism: Clinical and Experimental, 2000, 49(11): 1390–1394

    Article  CAS  Google Scholar 

  51. Xu B, Jiang G, Yu W, et al. H2O2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucosemonitored transdermal delivery of insulin. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(41): 8200–8208

    Article  CAS  Google Scholar 

  52. Khanna P, Flam B R, Osborn B, et al. Skin penetration and fracture strength testing of silicon dioxide microneedles. Sensors and Actuators A: Physical, 2011, 170(1–2): 180–186

    Article  CAS  Google Scholar 

  53. McGrath M G, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86(2): 200–211

    Article  CAS  Google Scholar 

References

  1. Lai J T, Filla D, Shea R. Functional polymers from novel carboxylterminated trithiocarbonates as highly efficient RAFT agents. Macromolecules, 2002, 35(18): 6754–6756

    Article  CAS  Google Scholar 

  2. Li M, Zhang C, Yang X L, et al. Controllable synthesis of hollow mesoporous silica nanoparticles templated by kinetic self-assembly using a gemini surfactant. RSC Advances, 2013, 3(37): 16304–16307

    Article  CAS  Google Scholar 

  3. Zhang J, Lu S, Zhu H, et al. Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6(89): 86575–86585

    Article  CAS  Google Scholar 

  4. Tong Z, Zhou J, Zhong J, et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Applied Materials & Interfaces, 2018, 10(23): 20014–20024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21604073), the Natural Science Foundation of Zhejiang Province (LY20E030005), the Fundamental Research Funds of Zhejiang Sci-Tech University (2019Q003), and the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (PMND201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaizai Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, S., Hu, W. et al. Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Front. Mater. Sci. 15, 98–112 (2021). https://doi.org/10.1007/s11706-021-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0532-1

Keywords

Navigation