Skip to main content
Log in

Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we report on synergistic effect of chloride ion and albumin on the corrosion of pure magnesium through corrosion tests. We show that the adsorption of albumin mainly affects the anodic polarization behavior of pure magnesium in NaCl solution. Low concentration of albumin enhances the reaction reactivity of pure magnesium and the initial evolvement of hydrogen at the initial immersion time. Addition of 1 g/L albumin provides limited corrosion control for pure magnesium in NaCl solution. In comparison with low concentration albumin, addition of 10 g/L albumin can effectively inhibit the further dissolution of pure magnesium in test solutions with NaCl concentration of 0.2–0.8 wt.%, but this effect lowers gradually with increasing the concentration of chloride ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto A, Hiromoto S. Effect of inorganic salts amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559–1568

    Article  Google Scholar 

  2. Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63–72

    Article  Google Scholar 

  3. Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459

    Article  Google Scholar 

  4. Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science and Engineering B, 2011, 176(20): 1600–1608

    Article  Google Scholar 

  5. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 2010, 6(5): 1680–1692

    Article  Google Scholar 

  6. Balamurugan A, Rajeswari S, Balossier G, et al. Corrosion aspects of metallic implants — An overview. Materials and Corrosion, 2008, 59(11): 855–869

    Article  Google Scholar 

  7. Vogt C, Bechstein K, Gruhl S, et al. Investigation of the degradation of biodegradable Mg implant alloys in vitro and in vivo by analytical methods. In: Kainer K U, Weimar D G M, eds. Proceeding of the 8th International Conference on Magnesium Alloys and Their Applications. Weinheim: Wiley-VCH, 2010, 1162–1174

    Google Scholar 

  8. Mueller W-D, de Mele MF L, Nascimento ML, et al. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. Journal of Biomedical Materials Research Part A, 2009, 90(2): 487–495

    Article  Google Scholar 

  9. Liu C, Xin Y, Tian X, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. Journal of Materials Research, 2007, 22(7): 1806–1814

    Article  Google Scholar 

  10. Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347

    Article  Google Scholar 

  11. Gu X N, Zheng Y F, Chen L J. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg- Ca, AZ31, AZ91 alloys. Biomedical Materials, 2009, 4(6): 065011

    Article  Google Scholar 

  12. Rettig R, Virtanen S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167–175

    Article  Google Scholar 

  13. Hornberger H, Witte F, Hort N, et al. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys. Materials Science and Engineering B, 2011, 176(20): 1746–1755

    Article  Google Scholar 

  14. Xin Y C, Hu T, Chu P K. Influence of test solutions on in vitro studies of biomedical magnesium alloys. Journal of the Electrochemical Society, 2010, 157(7): C238–C243

    Article  Google Scholar 

  15. Xin Y, Huo K, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008, 4(6): 2008–2015

    Article  Google Scholar 

  16. Cheng X, Roscoe S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials, 2005, 26(35): 7350–7356

    Article  Google Scholar 

  17. Hara N, Kobayashi Y, Kagaya D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corrosion Science, 2007, 49(1): 166–175

    Article  Google Scholar 

  18. Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11–33

    Article  Google Scholar 

  19. Roach P, Eglin D, Rohde K, et al. Modern biomaterials: a review — bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18(7): 1263–1277

    Google Scholar 

  20. Klinger A, Steinberg D, Kohavi D, et al. Mechanism of adsorption of human albumin to titanium in vitro. Journal of Biomedical Materials Research, 1997, 36(3): 387–392

    Article  Google Scholar 

  21. Ouerd A, Alemany-Dumont C, Berthomé G, et al. Reactivity of titanium in physiological medium I. Electrochemical characterization of the metal/protein interface. Journal of the Electrochemical Society, 2007, 154(10): C593–C601

    Article  Google Scholar 

  22. Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6Al-4V alloy immersed in a simulated plasma solution. Journal of Biomedical Materials Research Part A, 2007, 81(3): 531–543

    Article  Google Scholar 

  23. Song S G, Atrens A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science, 1998, 40(10): 1769–1791

    Article  Google Scholar 

  24. Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496(1–2): 500–507

    Article  Google Scholar 

  25. Qu Q, Ma J, Wang L, et al. Corrosion behaviour of AZ31B magnesium alloy in NaCl solutions saturated with CO2. Corrosion Science, 2011, 53(4): 1186–1193

    Article  Google Scholar 

  26. Cohavi O, Corni S, De Rienzo F, et al. Protein-surface interactions: challenging experiments and computations. Journal of Molecular Recognition, 2010, 23(3): 259–262

    Google Scholar 

  27. Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering A, 2004, 366(1): 74–86

    Article  Google Scholar 

  28. Song YW, Shan D Y, Chen R S, et al. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Materials Science and Engineering C, 2009, 29(3): 1039–1045

    Article  Google Scholar 

  29. Zhang Y J, Yan CW, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Science, 2005, 47(11): 2816–2831

    Article  Google Scholar 

  30. Contu F, Elsener B, Böhni H. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples. Journal of Biomedical Materials Research, 2002, 62(3): 412–421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jiu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CL., Zhang, Y., Zhang, CY. et al. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium. Front. Mater. Sci. 8, 244–255 (2014). https://doi.org/10.1007/s11706-014-0251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0251-y

Keywords

Navigation