Skip to main content
Log in

Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Increasing evidence shows that magnetic fields and magnetic responsive scaffolds can play unique roles in promoting bone repair and regeneration. This article addresses the synergistic effects of magnetic scaffolds in response to external magnetic fields on the bone regeneration in situ. Additionally, the exploration of using magnetic scaffolds as tools in the bone implant fixation, local drug delivery and mimicking microenvironment of stem cell differentiation are introduced. We also discussed possible underlying mechanisms and perspectives of magnetic responsive scaffolds in the bone repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Wang L, Fan Y, et al. Nanostructured scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A, 2013, 101A(8): 2424–2435

    Article  Google Scholar 

  2. Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Engineering Part A, 2014, doi: 10.1089/ten.tea.2013.0356

    Google Scholar 

  3. Ko E, Cho S W. Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis. International Journal of Stem Cells, 2013, 6(2): 87–91

    Google Scholar 

  4. Li J, Baker B A, Mou X, et al. Biopolymer/calcium phosphate scaffolds for bone tissue engineering. Advanced Healthcare Materials, 2014, doi: 10.1002/adhm.201300562

    Google Scholar 

  5. Orr A W, Helmke B P, Blackman B R, et al. Mechanisms of mechanotransduction. Developmental Cell, 2006, 10(1): 11–20

    Article  Google Scholar 

  6. Morgan E F, Gleason R E, Hayward L N M, et al. Mechanotransduction and fracture repair. The Journal of Bone & Joint Surgery, 2008, 90(Suppl 1): 25–30

    Article  Google Scholar 

  7. Soucacos P N, Johnson E O, Babis G. An update on recent advances in bone regeneration. Injury, 2008, 39(Suppl 2): S1–S4

    Article  Google Scholar 

  8. Epari D R, Duda G N, Thompson M S. Mechanobiology of bone healing and regeneration: in vivo models. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 2010, 224(12): 1543–1553

    Article  Google Scholar 

  9. Galli C, Passeri G, Macaluso G M. Osteocytes and WNT: the mechanical control of bone formation. Journal of Dental Research, 2010, 89(4): 331–343

    Article  Google Scholar 

  10. Chen J, Rungsiyakull C, Li W, et al. Multiscale design of surface morphological gradient for osseointegration. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20: 387–397

    Article  Google Scholar 

  11. Bruce G K, Howlett C R, Huckstep R L. Effect of a static magnetic field on fracture healing in a rabbit radius. Preliminary results. Clinical Orthopaedics and Related Research, 1987, 222: 300–306

    Google Scholar 

  12. Yan Q C, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics, 1998, 20(6): 397–402

    Article  Google Scholar 

  13. Jaberi F M, Keshtgar S, Tavakkoli A, et al. A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits. Archives of Medical Research, 2011, 42(4): 268–273

    Article  Google Scholar 

  14. Kotani H, Kawaguchi H, Shimoaka T, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. Journal of Bone and Mineral Research, 2002, 17(10): 1814–1821

    Article  Google Scholar 

  15. Leesungbok R, Ahn S-J, Lee S-W, et al. The effects of a static magnetic field on bone formation around a sandblasted, large-grit, acid-etched-treated titanium implant. Journal of Oral Implantology, 2013, 39(S1): 248–255

    Article  Google Scholar 

  16. Torbet J, Ronzière M-C. Magnetic alignment of collagen during self-assembly. Biochemical Journal, 1984, 219(3): 1057–1059

    Google Scholar 

  17. Murthy N S. Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils. Biopolymers, 1984, 23(7): 1261–1267

    Article  Google Scholar 

  18. Torbet J, Freyssinet J M, Hudry-Clergeon G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature, 1981, 289(5793): 91–93

    Article  Google Scholar 

  19. Ueno S, Iwasaka M, Tsuda H. Effects of magnetic fields on fibrin polymerization and fibrinolysis. IEEE Transactions on Magnetics, 1993, 29(6): 3352–3354

    Article  Google Scholar 

  20. Yamamoto Y, Ohsaki Y, Goto T, et al. Effects of static magnetic fields on bone formation in rat osteoblast cultures. Journal of Dental Research, 2003, 82(12): 962–966

    Article  Google Scholar 

  21. Yuge L, Okubo A, Miyashita T, et al. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochemical and Biophysical Research Communications, 2003, 311(1): 32–38

    Article  Google Scholar 

  22. Yan Q C, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics, 1998, 20(6): 397–402

    Article  Google Scholar 

  23. Grace K L, Revell W J, Brookes M. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopedics, 1998, 21(3): 297–302

    Google Scholar 

  24. Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrixinduced bone formation in a bony defect in the premaxilla of rats. Journal of Dental Research, 1992, 71(12): 1920–1925

    Article  Google Scholar 

  25. Chalidis B, Sachinis N, Assiotis A, et al. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. International Journal of Immunopathology and Pharmacology, 2011, 24(1 Suppl 2): 17–20

    Google Scholar 

  26. Glazer P A, Heilmann MR, Lotz J C, et al. Use of electromagnetic fields in a spinal fusion. A rabbit model. Spine, 1997, 22(20): 2351–2356

    Article  Google Scholar 

  27. Assiotis A, Sachinis N P, Chalidis B E. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. Journal of Orthopaedic Surgery and Research, 2012, 7(1): 24

    Article  Google Scholar 

  28. Miller G J, Burchardt H, Enneking W F, et al. Electromagnetic stimulation of canine bone grafts. The Journal of Bone & Joint Surgery, 1984, 66(5): 693–698

    Google Scholar 

  29. Mayer-Wagner S, Passberger A, Sievers B, et al. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics, 2011, 32(4): 283–290

    Article  Google Scholar 

  30. Tonomura A, Sumita Y, Ando Y, et al. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connective Tissue Research, 2007, 48(5): 229–238

    Article  Google Scholar 

  31. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 2002, 81(8): 531–535

    Article  Google Scholar 

  32. Hsu S H, Chang J C. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology, 2010, 62(2): 143–155

    Article  Google Scholar 

  33. Kasten A, Müller P, Bulnheim U, et al. Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. Journal of Cellular Biochemistry, 2010, 111(6): 1586–1597

    Article  Google Scholar 

  34. Dimitriou R, Babis G C. Biomaterial osseointegration enhancement with biophysical stimulation. Journal of Musculoskeletal & Neuronal Interactions, 2007, 7(3): 253–265

    Google Scholar 

  35. Wu Y, Jiang W, Wen X, et al. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomedical Materials, 2010, 5(1): 015001

    Article  Google Scholar 

  36. Wei Y, Zhang X, Song Y, et al. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomedical Materials, 2011, 6(5): 055008

    Article  Google Scholar 

  37. Chen W, Long T, Guo Y-J, et al. Magnetic hydroxyapatite coatings with oriented nanorod arrays: hydrothermal synthesis, structure and biocompatibility. Journal of Materials Chemistry B, 2014, doi: 10.1039/C3TB21769H

    Google Scholar 

  38. Meng J, Zhang Y, Qi X, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of preosteoblast cells. Nanoscale, 2010, 2(12): 2565–2569

    Article  Google Scholar 

  39. Zeng X B, Hu H, Xie L Q, et al. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International Journal of Nanomedicine, 2012, 7: 3365–3378

    Article  Google Scholar 

  40. Panseri S, Cunha C, D’Alessandro T, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS ONE, 2012, 7(6): e38710

    Article  Google Scholar 

  41. Li L, Yang G, Li J, et al. Cell behaviors on magnetic electrospun poly-D, L-lactide nanofibers. Materials Science and Engineering C, 2014, 34(1): 252–261

    Article  Google Scholar 

  42. Meng J, Xiao B, Zhang Y, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Scientific Reports, 2013, 3:2655 (7 pages)

    Google Scholar 

  43. Wu C, Fan W, Zhu Y, et al. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomaterialia, 2011, 7(10): 3563–3572

    Article  Google Scholar 

  44. Bock N, Riminucci A, Dionigi C, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomaterialia, 2010, 6(3): 786–796

    Article  Google Scholar 

  45. Panseri S, Russo A, Giavaresi G, et al. Innovative magnetic scaffolds for orthopedic tissue engineering. Journal of Biomedical Materials Research Part A, 2012, 100(9): 2278–2286

    Google Scholar 

  46. Tampieri A, Landi E, Valentini F, et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology, 2011, 22(1): 015104

    Article  Google Scholar 

  47. Russo A, Shelyakova T, Casino D, et al. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Medical Engineering & Physics, 2012, 34(9): 1287–1293

    Article  Google Scholar 

  48. Panseri S, Russo A, Sartori M, et al. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone, 2013, 56(2): 432–439

    Article  Google Scholar 

  49. Fuhrer R, Hofmann S, Hild N, et al. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS ONE, 2013, 8(11): e81362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Yan Xu or Ning Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HY., Gu, N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 8, 20–31 (2014). https://doi.org/10.1007/s11706-014-0232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0232-1

Keywords

Navigation