Skip to main content
Log in

Influence of service temperature on tribological characteristics of self-lubricant coatings: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Self-lubricating coatings have been widely used to reduce friction in moving machine assemblies. However, the tribological performance of these coatings is strongly dependent on the service temperature. In this paper, an extensive review pertaining to the influence of operating service temperature on tribological performance of self-lubricating coatings has been carried out. Based on the effective lubricating temperature range, the self-lubricating coatings developed in the past have been divided into three groups: low temperature lubricant coating (from −200°C to room temperature), moderate temperature lubricant coating (from room temperature to 500°C) and high temperature lubricant coating (> 500°C). Ideas concerning possible ways to extend the operating temperature range of self-lubricating coatings have been presented as follows: hybridized tribological coating, adaptive tribological coatings, and diffusion rate limited solid lubricant coating. In addition, a new self-lubricating coating formulation for potential application at a wide operating temperature range has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Voevodin A A, O’Neill J P, Zabinski J S. Nanocomposite tribological coatings for aerospace applications. Surface and Coatings Technology, 1999, 116–119: 36–45

    Article  Google Scholar 

  2. Peter M J. A survey of solid lubricant technology. Technical Report, 1972

  3. Sherbiney M A, Halling J. Friction and wear of ion-plated soft metallic films. Wear, 1977, 45(2): 211–220

    Article  CAS  Google Scholar 

  4. Kubart T, Polcar T, Kopecky L, et al. Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surface and Coatings Technology, 2005, 193(1–3): 230–233

    Article  CAS  Google Scholar 

  5. Grill A. Tribology of diamondlike carbon and related materials: an updated review. Surface and Coatings Technology, 1997, 94–95: 507–513

    Article  Google Scholar 

  6. Gulbinski W, Suszko T. Thin films of MoO3-Ag2O binary oxides — the high temperature lubricants. Wear, 2006, 261(7–8): 867–873

    Article  CAS  Google Scholar 

  7. Pauleau Y, Juliet P, Gras R. Tribological properties of calcium fluoride-based solid lubricant coatings at high temperatures. Thin Solid Films, 1998, 317(1–2): 481–485

    Article  CAS  Google Scholar 

  8. John P J, Prasad S V, Voevodin A A, et al. Calcium sulfate as a high temperature solid lubricant. Wear, 1998, 219(2): 155–161

    Article  CAS  Google Scholar 

  9. Zhang S W. State-of-the-art of polymer tribology. Tribology International, 1998, 31(1–3): 49–60

    Article  CAS  Google Scholar 

  10. Gamulya G D, Kopeteva T A, Lebedeva I L, et al. Effect of low temperatures on the wear mechanism of solid lubricant coatings in vacuum. Wear, 1993, 160(2): 351–359

    Article  Google Scholar 

  11. Wigley D A. Materials for Low Temperature Use. Oxford, UK: Oxford University Press, 1978

    Google Scholar 

  12. Michael P C, Rabinowicz E, Iwasa Y. Friction and wear of polymeric materials at 293, 77 and 4.2 K. Cryogenics, 1991, 31(8): 695–704

    Article  Google Scholar 

  13. Colbert R S, Sawyer W G. Thermal dependence of the wear of molybdenum disulphide coatings. Wear, 2010, 269(11–12): 719–723

    Article  CAS  Google Scholar 

  14. Yukhno T P, Vvedensky Y V, Sentyurikhina L N. Low temperature investigations on frictional behaviour and wear resistance of solid lubricant coatings. Tribology International, 2001, 34(4): 293–298

    Article  CAS  Google Scholar 

  15. Ostrovskaya Ye L, Yukhno T P, Gamulya G D, et al. Low temperature tribology at the B Verkin Institute for Low Temperature Physics & Engineering (historical review). Tribology International, 2001, 34(4): 265–276

    Article  CAS  Google Scholar 

  16. MaréChal N, Pauleau Y, Quesnel E. Sputter-deposited lubricant thin films operating at elevated temperatures in air. Surface and Coatings Technology, 1994, 68–69: 416–421

    Article  Google Scholar 

  17. Kloos K H, Bruszeit E, Gabriel H M. Tribological properties of soft metallic coatings deposited by conventional and thermionically assisted triode ion plating. Thin Solid Films, 1981, 80(1–3): 307–319

    Article  CAS  Google Scholar 

  18. Antler M, Spalvins T. Lubrication with thin gold films. Gold Bulletin, 1988, 21(2): 59–68

    Article  CAS  Google Scholar 

  19. Spalvins T. Sputtering of solid lubricants. NASA TM X-52642, 1969

  20. Wahl K J, Seitzman L E, Bolster R N, et al. Ion-beam deposited Cu-Mo coatings as high temperature solid lubricants. Surface and Coatings Technology, 1997, 89(3): 245–251

    Article  CAS  Google Scholar 

  21. Hirano M, Miyake S. Sliding life enhancement of aWS2 sputtered film by ion beam mixing. Applied Physics Letters, 1985, 47(7): 683–685

    Article  CAS  Google Scholar 

  22. Mikkelsen N J, Chevallier J, Sørensen G. Friction and wear measurements of sputtered MoSx films amorphized by ion bombardment. Applied Physics Letters, 1988, 52(14): 1130–1132

    Article  CAS  Google Scholar 

  23. Pope L E, Jervis T R, Nastasi M. Effects of laser processing and doping on the lubrication and chemical properties of thin MoS2 films. Surface and Coatings Technology, 1990, 42(3): 217–225

    Article  CAS  Google Scholar 

  24. Watanabe S, Noshiro J, Miyake S. Friction properties of WS2/MoS2 multilayer films under vacuum environment. Surface and Coatings Technology, 2004, 188–189: 644–648

    Article  Google Scholar 

  25. Kohli A K, Prakash B. Contact pressure dependency in frictional behaviour of burnished molybdenum disulphide coatings. Tribology Transactions, 2001, 44(1): 147–151

    Article  CAS  Google Scholar 

  26. Kustas F M, Misra M S, Shepard D F, et al. Tribological performance of hard carbon coatings on 440C bearing steel. Surface and Coatings Technology, 1991, 48(2): 113–119

    Article  CAS  Google Scholar 

  27. Wang D F, Kato K, Umehara N. Mechanical characterization and tribological evaluation of ion-beam-assisted sputter coatings of carbon with nitrogen incorporation. Surface and Coatings Technology, 2000, 123(2–3): 177–184

    Article  CAS  Google Scholar 

  28. Yu X, Wang C B, Liu Y, et al. Cr-doped DLC films in three midfrequency dual-magnetron power modes. Surface and Coatings Technology, 2006, 200(24): 6765–6769

    Article  Google Scholar 

  29. Krumpiegl T, Meerkamm H, Fruth W. Amorphous carbon coatings and their tribological behaviour at high temperatures and in high vacuum. Surface and Coatings Technology, 1999, 120–121: 555–560

    Article  Google Scholar 

  30. Ito H, Yamamoto K, Masuko M. Thermal stability of UBM sputtered DLC coatings with various hydrogen contents. Thin Solid Films, 2008, 517(3): 1115–1119

    Article  CAS  Google Scholar 

  31. Fusaro R L. Tribological properties of polymer films and solid bodies in a vacuum environment. NASA TM-88966, 1987

  32. Sidorenko A, Ahn H-S, Kim D-I, et al. Wear stability of polymer nanocomposite coatings with trilayer architecture. Wear, 2002, 252(11–12): 946–955

    Article  CAS  Google Scholar 

  33. Chvedov D, Jones R. Frictional behavior of rolled surfaces coated with polymer films. Surface and Coatings Technology, 2004, 188–189: 544–549

    Article  Google Scholar 

  34. Zouari M, Kharrat M, Dammak M. Wear and friction analysis of polyester coatings with solid lubricant. Surface and Coatings Technology, 2010, 204(16–17): 2593–2599

    Article  CAS  Google Scholar 

  35. Kwon J-D, Lee S-H, Lee K-H, et al. Silver-palladium alloy deposited by DC magnetron sputtering method as lubricant for high temperature application. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 1001–1004

    Article  CAS  Google Scholar 

  36. Sliney H E. High temperature solid lubricants, Part I: Layered lattice compounds and graphite. ASME Journal of Mechanical Engineering, 1974, 96(2): 18–22

    CAS  Google Scholar 

  37. Matveevsky R M, Lazovskaya O V, Popov S A. Temperature stability of molybdenum disulfide solid lubricant coatings in vacuum. In: Proceedings of the 2nd International Conference on Solid Lubrication, 1978, ASLE SP-6: 41–44

  38. Brainard W A, Buckley D H. The influence of ordering on the friction and wear of metals in vacuum. NASA TN-D-5141, 1969

  39. Grill A. Review of the tribology of diamond-like carbon. Wear, 1993, 168(1–2): 143–153

    Article  CAS  Google Scholar 

  40. Charitidis C A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 51–70

    Article  CAS  Google Scholar 

  41. Grill A, Meyerson B S, Patel V. Bonding, interfacial effects and adhesion in DLC diamond optics. Proceedings of the Society for Photo-Instrumentation Engineers, 1989, 969: 52–59

    CAS  Google Scholar 

  42. Zaidi H, Mezin A, Nivoit M, et al. The influence of the environment on the friction and wear of graphitic carbons: I. Action of atomic hydrogen. Applied Surface Science, 1989, 40(1–2): 103–114

    Article  CAS  Google Scholar 

  43. Peterson M B, Johnson R L. Friction studies of graphite and mixtures of graphite with several metallic oxides and salts at temperatures to 1000°F. NACA TN-3 3657, 1957 (17 pages)

  44. Memming R, Tolle H J, Wierenga P E. Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-activated chemical vapour deposition process II: Tribological and mechanical properties. Thin Solid Films, 1986, 143(1): 31–41

    Article  CAS  Google Scholar 

  45. Weissmantel C. Deposition of metastable films by ion beam and plasma techniques. In: Proceedings of the 9th International Vacuum Congress and the 5th International Conference on Solid Surfaces, 1983, 299

  46. Enke K. Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbon layers. Thin Solid Films, 1981, 80(1–3): 227–234

    Article  CAS  Google Scholar 

  47. Holmberg K, Matthews A. Coating Tribology. Elsevier, 2009

  48. Allam I. Solid lubricants for applications at elevated temperatures. Journal of Materials Science, 1991, 26(15): 3977–3984

    Article  CAS  Google Scholar 

  49. Hadley J S, Harland L E. Electroless nickel/PTFE composite coatings. Metal Finishing, 1987, 85(12): 51–53

    CAS  Google Scholar 

  50. Gresham R M. Solid film lubricants: unique products for unique lubrication. Lubrication Engineering, 1988, 44(2): 143–145

    CAS  Google Scholar 

  51. Fusaro R L. Effect of thermal aging on the tribological properties of polyimide films and polyimide-bonded graphite fluoride films. NASA, TM-79045, 1979

  52. Prasad S V, Zabinski J S. Tribological behavior of nanocrystalline zinc oxide films. Wear, 1997, 203–204: 498–506

    Article  Google Scholar 

  53. Peterson M B, Calabrese S J, Stupp B. Lubrication with naturally occurring double oxide films. Final Report, ADA 124248, 1982

  54. Sliney H E. Lubricating properties of some bonded fluoride and oxide coatings for temperatures to 1500°F. NASA-TN-D-478, 1960 (27 pages)

  55. John P J, Zabinski J S. Sulfate based coatings for use as high temperature lubricants. Tribology Letters, 1999, 7(1): 31–37

    Article  CAS  Google Scholar 

  56. Zabinski J S, Day A E, Donley M S, et al. Synthesis and characterization of a high-temperature oxide lubricant. Journal of Materials Science, 1994, 29(22): 5875–5879

    Article  CAS  Google Scholar 

  57. Sliney H E. Effect of sliding velocity on friction properties and endurance life of bonded lead monoxide coatings at temperatures up to 1250°F. NACA-RM-E 58B11, 1958 (16 pages)

  58. Sliney H E. Lubricating properties of lead-monoxide-base coatings of various compositions at temperatures to 1250°F. NASA-M-3 3-2-59E, 1959 (22 pages)

  59. Zabinski J S, Corneille J, Prasad S V. Lubricious zinc oxide films: synthesis, characterization and tribological behavior. Journal of Materials Science, 1997, 32(20): 5313–5319

    Article  CAS  Google Scholar 

  60. Prasad S V, Nainaparampil J J, Zabinski J S. Lubricious zinc oxide films grown by pulsed laser deposition: Lateral force microscopy of wear surfaces. Journal of Materials Science Letters, 2000, 19 (22): 1979–1981

    Article  CAS  Google Scholar 

  61. Sliney H E. Solid lubricant materials for high temperatures — a review. Tribology International, 1982, 15(5): 303–315

    Article  CAS  Google Scholar 

  62. Erdemir A, Fenske G R, Erck R A, et al. Ion-assisted deposition of silver films on ceramics for friction and wear control. Lubrication Engineering, 1990, 46(1): 23–30

    CAS  Google Scholar 

  63. Richard B E. Tribology Data Handbook. New York: CRC press, 1997

    Book  Google Scholar 

  64. Erdemir A. A crystal-chemical approach to lubrication by solid oxides. Tribology Letters, 2000, 8(2–3): 97–102

    Article  CAS  Google Scholar 

  65. Sliney H E. Rare earth fluorides and oxide-an exploratory study of their use as solid lubricants at temperatures to 1800°F (1000°C). NASA TN D-5 5301, 1969

  66. Murray S F, Calabrese S J. Effect of solid lubricants on low speed sliding behavior of silicon nitride at temperatures to 800°C. Lubrication Engineering, 1993, 49(12): 955–964

    CAS  Google Scholar 

  67. Walck S D, Zabinski J S, McDevitt N T, et al. Characterization of air-annealed, pulsed laser deposited ZnO-WS2 solid film lubricants by transmission electron microscopy. Thin Solid Films, 1997, 305(1–2): 130–143

    Article  CAS  Google Scholar 

  68. Sliney H E. High temperature solid lubricants, Part 1: layer lattice compounds and graphite. ASME Journal of Mechanical Engineering, 1974, 96(2): 18–22

    CAS  Google Scholar 

  69. Sliney H E. Wide temperature spectrum self-lubricating coatings prepared by plasma spraying. Thin Solid Films, 1979, 64(1–2): 211–217

    Article  CAS  Google Scholar 

  70. Amato I, Martinengo P C. Some improvements in solid lubricants coatings for high temperature operations. ASLE Transactions, 1973, 16(1): 42–49

    Article  CAS  Google Scholar 

  71. Sliney H E. The use of silver in self-lubricating coatings for extreme temperatures. ASLE Transactions, 1986, 29(3): 370–376

    Article  CAS  Google Scholar 

  72. Sliney H E. Coatings for friction and wear control at high temperatures. Surface and Coatings Technology, 1987, 33: 243–244

    Article  Google Scholar 

  73. Zabinski J S, Donley M S, Dyhouse V J, et al. Chemical and tribological characterization of PbO-MoS2 films grown by pulsed laser deposition. Thin Solid Films, 1992, 214(2): 156–163

    Article  CAS  Google Scholar 

  74. Voevodin A A, Zabinski J S. Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films, 2000, 370 (1–2): 223–231

    Article  CAS  Google Scholar 

  75. Voevodin A A, Fitz T A, Hu J J, et al. Nanocomposite tribological coatings with “chameleon” surface adaptation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(4): 1434–1444

    Article  CAS  Google Scholar 

  76. Hu J J, Muratore C, Voevodin A A. Silver diffusion and hightemperature lubrication mechanisms of YSZ-Ag-Mo based nanocomposite coatings. Composites Science and Technology, 2007, 67(3–4): 336–347

    Article  CAS  Google Scholar 

  77. Baker C C, Hu J J, Voevodin A A. Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments. Surface and Coatings Technology, 2006, 201(7): 4224–4229

    Article  CAS  Google Scholar 

  78. Aouadi S M, Paudel Y, Simonson W J, et al. Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surface and Coatings Technology, 2009, 203(10–11): 1304–1309

    Article  CAS  Google Scholar 

  79. Scharf T W, Kotula P G, Prasad S V. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Materialia, 2010, 58(12): 4100–4109

    Article  CAS  Google Scholar 

  80. Muratore C, Hu J J, Voevodin A A. Tribological coatings for lubrication over multiple thermal cycles. Surface and Coatings Technology, 2009, 203(8): 957–962

    Article  CAS  Google Scholar 

  81. Mulligan C P, Blanchet T A, Gall D. CrN-Ag nanocomposite coatings: Tribology at room temperature and during a temperature ramp. Surface and Coatings Technology, 2010, 204(9–10): 1388–1394

    Article  CAS  Google Scholar 

  82. Kutschej K, Mitterer C, Mulligan C P, et al. High-temperature tribological behavior of CrN-Ag self-lubricating coatings. Advanced Engineering Materials, 2006, 8(11): 1125–1129

    Article  CAS  Google Scholar 

  83. Mulligan C P, Blanchet T A, Gall D. Control of lubricant transport by a CrN diffusion barrier layer during high-temperature sliding of a CrN-Ag composite coating. Surface and Coatings Technology, 2010, 205(5): 1350–1355

    Article  CAS  Google Scholar 

  84. Erdemir A, Bindal C, Fenske G R. Formation of ultralow friction surface films on boron carbide. Applied Physics Letters, 1996, 68 (12): 1637–1639

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Feng Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JF., Jiang, Y., Hardell, J. et al. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review. Front. Mater. Sci. 7, 28–39 (2013). https://doi.org/10.1007/s11706-013-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0190-z

Keywords

Navigation