Skip to main content
Log in

Boosting the direct conversion of NH4HCO3 electrolyte to syngas on Ag/Zn zeolitic imidazolate framework derived nitrogen-carbon skeleton

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The electrochemical reduction of NH4HCO3 to syngas can bypass the high energy consumption of high-purity CO2 release and compression after the ammonia-based CO2 capture process. This technology has broad prospects in industrial applications and carbon neutrality. A zeolitic imidazolate framework-8 precursor was introduced with different Ag contents via colloid chemical synthesis. This material was carbonized at 1000 °C to obtain AgZn zeolitic imidazolate framework derived nitrogen carbon catalysts, which were used for the first time for boosting the direct conversion of NH4HCO3 electrolyte to syngas. The AgZn zeolitic imidazolate framework derived nitrogen carbon catalyst with a Ag/Zn ratio of 0.5:1 achieved the highest CO Faradaic efficiency of 52.0% with a current density of 1.15 mA·cm−2 at −0.5 V, a H2/CO ratio of 1–2 (−0.5 to −0.7 V), and a stable catalytic activity of more than 6 h. Its activity is comparable to that of the CO2-saturated NH4HCO3 electrolyte. The highly discrete Ag-Nx and Zn-Nx nodes may have combined catalytic effects in the catalysts synthesized by appropriate Ag doping and sufficient carbonization. These nodes could increase active sites of catalysts, which is conducive to the transport and adsorption of reactant CO2 and the stability of *COOH intermediate, thus can improve the selectivity and catalytic activity of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang K, Ashworth P, Zhang S, Liang X, Sun Y, Angus D. China’s carbon capture, utilization and storage (CCUS) policy: a critical review. Renewable & Sustainable Energy Reviews, 2020, 119: 109601

    Article  Google Scholar 

  2. Eide L I, Batum M, Dixon T, Elamin Z, Graue A, Hagen S, Hovorka S, Nazarian B, Nøkleby P H, Olsen G I, Ringrose P, Vieira R A M. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—a review. Energies, 2019, 12(10): 1945

    Article  CAS  Google Scholar 

  3. Feng D, Guo D, Zhang Y, Sun S, Zhao Y, Chang G, Guo Q, Qin Y. Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3H2O activation for promotion of new ammonia-based carbon capture. Chemical Engineering Journal, 2021, 409: 128193

    Article  CAS  Google Scholar 

  4. Deng W, Zhang L, Dong H, Chang X, Wang T, Gong J. Achieving convenient CO2 electroreduction and photovoltage in tandem using potential-insensitive disordered Ag nanoparticles. Chemical Science, 2018, 9(32): 6599–6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Wang S, Feng D, Gao J, Dong L, Zhao Y, Sun S, Huang Y, Qin Y. Functional biochar synergistic solid/liquid-phase CO2 capture: a review. Energy & Fuels, 2022, 36(6): 2945–2970

    Article  CAS  Google Scholar 

  6. Molina C T, Bouallou C. Assessment of different methods of CO2 capture in post-combustion using ammonia as solvent. Journal of Cleaner Production, 2015, 103: 463–468

    Article  CAS  Google Scholar 

  7. Zhang Y, Gao J, Feng D, Du Q, Wu S, Zhao Y. Optimization of the process of antisolvent crystallization of carbonized ammonia with a low carbon-to-nitrogen ratio. Fuel Processing Technology, 2017, 155: 59–67

    Article  CAS  Google Scholar 

  8. Zhang Y, Gao J, He M, Feng D, Du Q, Wu S. Simulation optimization of a new ammonia-based carbon capture process coupled with low-temperature waste heat utilization. Energy & Fuels, 2017, 31(4): 4219–4225

    Article  CAS  Google Scholar 

  9. Zhang Y, Gao J, Feng D, Du Q, Wu S, Zhao Y. Study on regenerative process of the new carbon capture technique based on antisolvent crystallization to strengthen crystallization. Canadian Journal of Chemical Engineering, 2017, 95(10): 1979–1984

    Article  CAS  Google Scholar 

  10. Sreedhar A, Reddy I N, Noh J S. Photocatalytic and electrocatalytic reduction of CO2 and N2 by Ti3C2 MXene supported composites for a cleaner environment: a review. Journal of Cleaner Production, 2021, 328: 129647

    Article  CAS  Google Scholar 

  11. Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998

    Article  PubMed  Google Scholar 

  12. Resasco J, Chen L D, Clark E, Tsai C, Hahn C, Jaramillo T F, Chan K, Bell A T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. Journal of the American Chemical Society, 2017, 139(32): 11277–11287

    Article  CAS  PubMed  Google Scholar 

  13. Shakeel S, Anwer A H, Khan M Z. Nitric acid treated graphite granular cathode for microbial electro reduction of carbon dioxide to acetate. Journal of Cleaner Production, 2020, 269: 122391

    Article  CAS  Google Scholar 

  14. Ming Z, Kun Z, Jun D. Overall review of China’s wind power industry: status quo, existing problems and perspective for future development. Renewable & Sustainable Energy Reviews, 2013, 24: 379–386

    Article  Google Scholar 

  15. Liu J, Yang J, Wang J, Yang M, Tian C, He X. The research of utilization hours of coal-fired power generation units based on electric energy balance. IOP Conference Series. Earth and Environmental Science, 2018, 108: 052097

    Article  Google Scholar 

  16. Li H, Gao J, Du Q, Shan J, Zhang Y, Wu S, Wang Z. Direct CO2 electroreduction from NH4HCO3 electrolyte to syngas on bromine-modified Ag catalyst. Energy, 2021, 216: 119250

    Article  CAS  Google Scholar 

  17. Li H, Gao J, Shan J, Du Q, Zhang Y, Guo X, Xie M, Wu S, Wang Z. Effect of halogen-modification on Ag catalyst for CO2 electrochemical reduction to syngas from NH4HCO3 electrolyte. Journal of Environmental Chemical Engineering, 2021, 9(6): 106415

    Article  CAS  Google Scholar 

  18. Wang Y, Zhang J. Structural engineering of transition metalbased nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(4): 838–854

    Article  CAS  Google Scholar 

  19. Lei Z, Tan Y, Zhang Z, Wu W, Cheng N, Chen R, Mu S, Sun X. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Research, 2020, 14(3): 868–878

    Article  Google Scholar 

  20. Wang R, Sun X, Ould-Chikh S, Osadchii D, Bai F, Kapteijn F, Gascon J. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction. ACS Applied Materials & Interfaces, 2018, 10(17): 14751–14758

    Article  CAS  Google Scholar 

  21. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angewandte Chemie International Edition, 2018, 57(7): 1944–1948

    Article  CAS  PubMed  Google Scholar 

  22. Huo Q, Li J, Qi X, Liu G, Zhang X, Zhang B, Ning Y, Fu Y, Liu J, Liu S. Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization. Chemical Engineering Journal, 2019, 378: 122106

    Article  CAS  Google Scholar 

  23. Li R, Ren X, Feng X, Li X, Hu C, Wang B. A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chemical Communications, 2014, 50(52): 6894–6897

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Xian S, Xia Q, Wang H, Li Z, Li J. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE Journal, 2013, 59(6): 2195–2206

    Article  CAS  Google Scholar 

  25. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Advancement of Science, 2018, 5(1): 1700275

    Google Scholar 

  26. Wang Z, Jin H, Meng T, Liao K, Meng W, Yang J, He D, Xiong Y, Mu S. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Advanced Functional Materials, 2018, 28(39): 1802596

    Article  Google Scholar 

  27. Nallathambi V, Lee J W, Kumaraguru S P, Wu G, Popov B N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. Journal of Power Sources, 2008, 183(1): 34–42

    Article  CAS  Google Scholar 

  28. Herrmann I, Kramm U I, Fiechter S, Bogdanoff P. Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2009, 54(18): 4275–4287

    Article  CAS  Google Scholar 

  29. Sun K, Wu L, Qin W, Zhou J, Hu Y, Jiang Z, Shen B, Wang Z. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(32): 12616–12623

    Article  CAS  Google Scholar 

  30. Ham Y S, Choe S, Kim M J, Lim T, Kim S K, Kim J J. Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2017, 208: 35–43

    Article  CAS  Google Scholar 

  31. Hossain M N, Liu Z, Wen J, Chen A. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 2018, 236: 483–489

    Article  CAS  Google Scholar 

  32. Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catalysis, 2017, 7(12): 8594–8604

    Article  CAS  Google Scholar 

  33. Gao J, Zhao S, Guo S, Wang H, Sun Y, Yao B, Liu Y, Huang H, Kang Z. Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO. Inorganic Chemistry Frontiers, 2019, 6(6): 1453–1460

    Article  CAS  Google Scholar 

  34. Rosen J, Hutchings G S, Lu Q, Rivera S, Zhou Y, Vlachos D G, Jiao F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catalysis, 2015, 5(7): 4293–4299

    Article  CAS  Google Scholar 

  35. Li T, Lees E W, Goldman M, Salvatore D A, Weekes D M, Berlinguette C P. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule, 2019, 3(6): 1487–1497

    Article  CAS  Google Scholar 

  36. Sui R, Pei J, Fang J, Zhang X, Zhang Y, Wei F, Chen W, Hu Z, Hu S, Zhu W, Zhuang Z. Engineering Ag-Nx single-atom sites on porous concave N-doped carbon for boosting CO2 electroreduction. ACS Applied Materials & Interfaces, 2021, 13(15): 17736–17744

    Article  CAS  Google Scholar 

  37. Lee C Y, Zhao Y, Wang C, Mitchell D R G, Wallace G G. Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO2 electroreduction to CO. Sustainable Energy & Fuels, 2017, 1(5): 1023–1027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2022 Heilongjiang Province’s “Emission and carbon neutrality” the open competition mechanism to select the best candidate project (Adsorption-type compression of carbon dioxide energy storage key technology research and demonstration: Grant No. 2022ZXJ09C01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, J., Shan, J. et al. Boosting the direct conversion of NH4HCO3 electrolyte to syngas on Ag/Zn zeolitic imidazolate framework derived nitrogen-carbon skeleton. Front. Chem. Sci. Eng. 17, 1196–1207 (2023). https://doi.org/10.1007/s11705-022-2289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2289-1

Keywords

Navigation