Skip to main content
Log in

Micromixing performance of the teethed high shear mixer under semi-batch operation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Semi-batch operated reaction processes are necessary for some competitive reaction systems to achieve a desirable process selectivity and productivity of fine chemical products. Herein the structural and operating parameters of the teethed high shear mixers were adjusted to study the micromixing performance in the semi-batch operated system, using the Villermaux/Dushman reaction system. The results indicate that the rising of the rotor speed and the number of rotor teeth, the decrease of the width of the shear gap and the radial distance between the feed position and the inner wall of stator can enhance the micromixing level and lead to the decrease of the segregation index. Additionally, computational fluid dynamics calculations were carried out to disclose the evolution of the flow pattern and turbulent energy dissipation rate of the semi-batch operated high shear mixer. Furthermore, the correlation was established with a mean relative error of 8.05% and R2 of 0.955 to fit the segregation index and the parameters studied in this work, which can provide valuable guidance on the design and optimization of the semi-batch operated high shear mixers in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne J R. Mixing and the selectivity of chemical reactions. Organic Process Research & Development, 2003, 7(4): 471–508

    Article  CAS  Google Scholar 

  2. Wenzel D, Górak A. Review and analysis of micromixing in rotating packed beds. Chemical Engineering Journal, 2018, 345: 492–506

    Article  CAS  Google Scholar 

  3. Yang Y C, Xiang Y, Pan C, Zou H K, Chu G W, Arowo M, Chen J F. Influence of viscosity on micromixing efficiency in a rotating packed bed with premixed liquid distributor. Journal of Chemical Engineering of Japan, 2015, 48(1): 72–79

    Article  CAS  Google Scholar 

  4. Nie A, Gao Z, Xue L, Cai Z, Evans G M, Eaglesham A. Micromixing performance and the modeling of a confined impinging jet reactor/high speed disperser. Chemical Engineering Science, 2018, 184: 14–24

    Article  CAS  Google Scholar 

  5. Zhang J S, Wang K, Lu Y C, Luo G S. Characterization and modeling of micromixing performance in micropore dispersion reactors. Chemical Engineering and Processing, 2010, 49(7): 740–747

    Article  CAS  Google Scholar 

  6. Bałdyga J, Pohorecki R. Turbulent micromixing in chemical reactors—a review. Chemical Engineering Journal, 1995, 58(2): 183–195

    Google Scholar 

  7. Guichardon P, Falk L. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure. Chemical Engineering Science, 2000, 55(19): 4233–4243

    Article  CAS  Google Scholar 

  8. Duan X, Feng X, Yang C, Mao Z. CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor. Chinese Journal of Chemical Engineering, 2018, 26(4): 675–683

    Article  CAS  Google Scholar 

  9. Assirelli M, Bujalski W, Eaglesham A, Nienow A W. Study of micromixing in a stirred tank using a rushton turbine. Chemical Engineering Research & Design, 2002, 80(8): 855–863

    Article  CAS  Google Scholar 

  10. Nouri L, Legrand J, Benmalek N, Imerzoukene F, Yeddou A R, Halet F. Characterisation and comparison of the micromixing efficiency in torus and batch stirred reactors. Chemical Engineering Journal, 2008, 142(1): 78–86

    Article  CAS  Google Scholar 

  11. Zhang J L, Xu S Q, Li W. High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chemical Engineering and Processing, 2012, 57–58: 25–41

    Article  Google Scholar 

  12. Fang J Z, Lee D J. Micromixing efficiency in static mixer. Chemical Engineering Science, 2001, 56(12): 3797–3802

    Article  CAS  Google Scholar 

  13. Yang K, Chu G W, Shao L, Luo Y, Chen J F. Micromixing efficiency of rotating packed bed with premixed liquid distributor. Chemical Engineering Journal, 2009, 153(1–3): 222–226

    Article  CAS  Google Scholar 

  14. Li W, Xia F, Qin H, Zhang M, Li W, Zhang J. Numerical and experimental investigations of micromixing performance and efficiency in a pore-array intensified tube-in-tube microchannel reactor. Chemical Engineering Journal, 2019, 370: 1350–1365

    Article  CAS  Google Scholar 

  15. Su Y H, Chen G W, Yuan Q. Ideal micromixing performance in packed microchannels. Chemical Engineering Science, 2011, 66(13): 2912–2919

    Article  CAS  Google Scholar 

  16. Zha L, Pu X, Shang M J, Li G X, Xu W H, Lu Q H, Su Y H. A study on the micromixing performance in microreactors for polymer solutions. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(9): 3479–3490

    Article  CAS  Google Scholar 

  17. Hu H, Chen Z, Jiao Z. Characterization of micro-mixing in a novel impinging streams reactor. Frontiers of Chemical Engineering in China, 2009, 3(1): 58–64

    Article  CAS  Google Scholar 

  18. Qin H Y, Zhang C, Xu Q, Dang X H, Li W, Lei K L, Zhou L T, Zhang J L. Geometrical improvement of inline high shear mixers to intensify micromixing performance. Chemical Engineering Journal, 2017, 319: 307–320

    Article  CAS  Google Scholar 

  19. Qin H, Xu Q, Li W, Dang X, Han Y, Lei K, Zhou L, Zhang J. Effect of stator geometry on the emulsification and extraction in the inline single-row blade-screen high shear mixer. Industrial & Engineering Chemistry Research, 2017, 56(33): 9376–9388

    Article  CAS  Google Scholar 

  20. John T P, Panesar J S, Kowalski A, Rodgers T L, Fonte C P. Linking power and flow in rotor-stator mixers. Chemical Engineering Science, 2019, 207: 504–515

    Article  CAS  Google Scholar 

  21. James J, Cooke M, Kowalski A, Rodgeys T L. Scale-up of batch rotor-stator mixers. Part 2—mixing and emulsification. Chemical Engineering Research & Design, 2017, 124: 321–329

    Article  CAS  Google Scholar 

  22. James J, Cooke M, Trinh L, Hou R, Martin P, Kowalski A, Rodgers T L. Scale-up of batch rotor-stator mixers. Part 1—power constants. Chemical Engineering Research & Design, 2017, 124: 313–320

    Article  CAS  Google Scholar 

  23. Vikash V, Deshawar D, Kumar V. Hydrodynamics and mixing characterization in a novel high shear mixer. Chemical Engineering and Processing, 2017, 120: 57–67

    Article  CAS  Google Scholar 

  24. Yang L, Li W, Guo J, Li W, Wang B, Zhang M, Zhang J. Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers. Frontiers of Chemical Science and Engineering, 2020, 15(2): 384–398

    Article  Google Scholar 

  25. Vikash V, Nigam K D P, Kumar V. Design and development of high shear mixers: fundamentals, applications and recent progress. Chemical Engineering Science, 2021, 232: 116296

    Article  CAS  Google Scholar 

  26. Chu G W, Song Y H, Yang H J, Chen J M, Chen H, Chen J F. Micromixing efficiency of a novel rotor-stator reactor. Chemical Engineering Journal, 2007, 128(2–3): 191–196

    Article  CAS  Google Scholar 

  27. Li W, Xia F, Zhao S, Guo J, Zhang M, Li W, Zhang J. Mixing performance of an inline high-shear mixer with a novel pore-array liquid distributor. Industrial & Engineering Chemistry Research, 2019, 58(44): 20213–20225

    Article  CAS  Google Scholar 

  28. Hernandez-Guzman A, Navarro-Gutierrez I M, Melendez-Hernandez P A, Hernandez-Beltran J U, Hernandez-Escoto H. Enhancement of alkaline-oxidative delignification of wheat straw by semi-batch operation in a stirred tank reactor. Bioresource Technology, 2020, 312: 123589

    Article  CAS  PubMed  Google Scholar 

  29. Zhang T, Nagy B, Szilágyi B, Gong J, Nagy Z K. Simulation and experimental investigation of a novel supersaturation feedback control strategy for cooling crystallization in semi-batch implementation. Chemical Engineering Science, 2020, 225: 115807

    Article  CAS  Google Scholar 

  30. Liu B, Zheng Y, Huang B, Qian L, Jin Z. The influence of feeding location on the micromixing performance of novel large-double-blade impeller. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52: 65–71

    Article  Google Scholar 

  31. Yang J, Zhang Q, Mao Z S, Yang C. Enhanced micromixing of non-newtonian fluids by a novel zigzag punched impeller. Industrial & Engineering Chemistry Research, 2019, 58(16): 6822–6829

    Article  CAS  Google Scholar 

  32. Yoshida M, Shimada N, Kanno R, Matsuura S, Otake Y. Liquid flow and mixing in bottom regions of baffled and unbaffled vessels agitated by turbine-type impeller. International Journal of Chemical Reactor Engineering, 2014, 12(1): 629–638

    Article  Google Scholar 

  33. Liu B, Sun N, Jin Z, Zhang Y, Sunden B. Numerical investigation and estimating correlation of micromixing performance of coaxial mixers. Industrial & Engineering Chemistry Research, 2019, 58(49): 22376–22388

    Article  CAS  Google Scholar 

  34. Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach. Chemical Engineering Science, 1996, 51(22): 5053–5064

    Article  CAS  Google Scholar 

  35. Guichardon P, Falk L, Villermaux J. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part II: kinetic study. Chemical Engineering Science, 2000, 55(19): 4245–4253

    Article  CAS  Google Scholar 

  36. Manzano Martínez A N, Haase A S, Assirelli M, van der Schaaf J. Alternative kinetic model of the iodide-iodate reaction for its use in micromixing investigations. Industrial & Engineering Chemistry Research, 2020, 59(49): 21359–21370

    Article  Google Scholar 

  37. Commenge J M, Falk L. Villermaux-Dushman protocol for experimental characterization of micromixers. Chemical Engineering and Processing, 2011, 50(10): 979–990

    Article  CAS  Google Scholar 

  38. Jasinska M, Baldyga J, Cooke M, Kowalski A J. Specific features of power characteristics of in-line rotor-stator mixers. Chemical Engineering and Processing, 2015, 91: 43–56

    Article  CAS  Google Scholar 

  39. John T P, Fonte C P, Kowalski A, Rodgers T L. A comparison of power and flow characteristics between batch and in-line rotor-stator mixers. Chemical Engineering Science, 2019, 202: 481–490

    Article  CAS  Google Scholar 

  40. Ozcan-Taskin G, Kubicki D, Padron G. Power and flow characteristics of three rotor-stator heads. Canadian Journal of Chemical Engineering, 2011, 89(5): 1005–1017

    Article  CAS  Google Scholar 

  41. Jasinska M, Baldyga J, Cooke M, Kowalski A. Application of test reactions to study micromixing in the rotor-stator mixer (test reactions for rotor-stator mixer). Applied Thermal Engineering, 2013, 57(1–2): 172–179

    Article  CAS  Google Scholar 

  42. Duan X, Feng X, Mao Z, Yang C. Numerical simulation of reactive mixing process in a stirred reactor with the DQMOM-IEM model. Chemical Engineering Journal, 2019, 360: 1177–1187

    Article  CAS  Google Scholar 

  43. Assirelli M, Lee S P, Nienow A W. Further studies of micromixing: scale-up, baffling and feed pipe backmixing. Journal of Chemical Engineering of Japan, 2011, 44(11): 901–907

    Article  CAS  Google Scholar 

  44. Assirelli M, Bujalski W, Eaglesham A, Nienow A W. Intensifying micromixing in a semi-batch reactor using a Rushton turbine. Chemical Engineering Science, 2005, 60(8–9): 2333–2339

    Article  CAS  Google Scholar 

  45. Utomo A, Baker M, Pacek A W. The effect of stator geometry on the flow pattern and energy dissipation rate in a rotor-stator mixer. Chemical Engineering Research & Design, 2009, 87(4A): 533–542

    Article  CAS  Google Scholar 

  46. Utomo A T, Baker M, Pacek A W. Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer. Chemical Engineering Research & Design, 2008, 86(12A): 1397–1409

    Article  CAS  Google Scholar 

  47. Hall S, Cooke M, El-Hamouz A, Kowalski A J. Droplet break-up by in-line Silverson rotor-stator mixer. Chemical Engineering Science, 2011, 66(10): 2068–2079

    Article  CAS  Google Scholar 

  48. Villermaux J, Falk L. A generalized mixing model for initial contacting of reactive fluids. Chemical Engineering Science, 1994, 49(24): 5127–5140

    Article  CAS  Google Scholar 

  49. Lafficher R, Digne M, Salvatori F, Boualleg M, Colson D, Puel F. Influence of micromixing time and shear rate in fast contacting mixers on the precipitation of boehmite and NH4-dawsonite. Chemical Engineering Science, 2018, 175: 343–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22090034, U20A20151, 21776179) and Chemistry and Chemical Engineering Guangdong Laboratory (Grant No. 1922015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Zhou or Jinli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, L., Guo, J. et al. Micromixing performance of the teethed high shear mixer under semi-batch operation. Front. Chem. Sci. Eng. 16, 546–559 (2022). https://doi.org/10.1007/s11705-021-2069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2069-3

Keywords

Navigation