Skip to main content
Log in

Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Plasma is gaining increasing interest for cancer treatment, but the underlying mechanisms are not yet fully understood. Using computer simulations at the molecular level, we try to gain better insight in how plasma-generated reactive oxygen and nitrogen species (RONS) can penetrate through the cell membrane. Specifically, we compare the permeability of various (hydrophilic and hydrophobic) RONS across both oxidized and non-oxidized cell membranes. We also study pore formation, and how it is hampered by higher concentrations of cholesterol in the cell membrane, and we illustrate the much higher permeability of H2O2 through aquaporin channels. Both mechanisms may explain the selective cytotoxic effect of plasma towards cancer cells. Finally, we also discuss the synergistic effect of plasma-induced oxidation and electric fields towards pore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 2011, 105(9): 1295–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graves D B. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers, 2014, 11(12): 1120–1127

    Article  CAS  Google Scholar 

  3. Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016, 630: 1–84

    Article  CAS  Google Scholar 

  4. Hole P S, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills R K, Burnett A K, Tonks A, Darley R L. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood, 2013, 122(19): 3322–3330

    Article  CAS  PubMed  Google Scholar 

  5. Papadopoulos M C, Saadoun S. Key roles of aquaporins in tumor biology. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2015, 1848(10): 2576–2583

    Article  CAS  Google Scholar 

  6. Cordeiro R M. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochimica et Biophysica Acta (BBA) -General Subjects, 2015, 1850(9): 1786–1794

    Article  CAS  Google Scholar 

  7. Yan D, Talbot A, Nourmohammadi N, Sherman J H, Cheng X, Keidar M. Toward understanding the selective anticancer capacity of cold atmospheric plasma—a model based on aquaporins. Biointerphases, 2015, 10(4): 040801

    Article  CAS  PubMed  Google Scholar 

  8. Wong-Ekkabut J, Xu Z, Triampo W, Tang I M, Tieleman D P, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophysical Journal, 2007, 93(12): 4225–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beranova L, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: Fluorescence spectroscopy and molecular simulations. Langmuir, 2010, 26(9): 6140–6144

    Article  CAS  PubMed  Google Scholar 

  10. Cwiklik L, Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chemical Physics Letters, 2010, 486(4–6): 99–103

    Article  CAS  Google Scholar 

  11. Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science (Cambridge), 2016, 7(1): 489–498

    Article  CAS  Google Scholar 

  12. Van der Paal J, Verheyen C, Neyts E C, Bogaerts A. Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: Possible explanation for plasma cancer selectivity. Scientific Reports, 2017, 7(1): 39526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Svarnas P, Matrali S H, Gazeli K, Antimisiaris S G. Assessment of atmospheric-pressure guided streamer (plasma bullet) influence on liposomes with different composition and physicochemical properties. Plasma Processes and Polymers, 2015, 12(7): 655–665

    Article  CAS  Google Scholar 

  14. Hirst A M, Frame F M, Arya M, Maitland N J, O’Connell D. Low temperature plasmas as emerging cancer therapeutics: The state of play and thoughts for the future. Tumour Biology, 2016, 37(6): 7021–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert E, Darny T, Dozias S, Iseni S, Pouvesle J M. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 2015, 22(12): 122007

    Article  CAS  Google Scholar 

  16. Begum A, Laroussi M, Pervez M R. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Advances, 2013, 3(6): 062117

    Article  CAS  Google Scholar 

  17. Weaver J C, Smith K C, Esser A T, Son R S, Gowrishankar T. A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry (Amsterdam, Netherlands), 2012, 87: 236–243

    Article  CAS  Google Scholar 

  18. Vernier P T, Ziegler M J. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. Journal of Physical Chemistry B, 2007, 111(45): 12993–12996

    Article  CAS  Google Scholar 

  19. Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2016, 1858 (10): 2278–2289

    Article  CAS  Google Scholar 

  20. Marrink S J, de Vries A H, Tieleman D P. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2009, 1788(1): 149–168

    Article  CAS  Google Scholar 

  21. Tai WY, Yang Y C, Lin H J, Huang C P, Cheng Y L, Chan MF, Yen H L, Liau I. Interplay between structure and fluidity of model lipid membranes under oxidative attack. Journal of Physical Chemistry B, 2010, 114(47): 15642–15649

    Article  CAS  Google Scholar 

  22. Grzelinska E, Bartosz G, Gwozdzinski K, Leyko W. A spin-label study of the effect of gamma radiation on erythrocyte membrane. Influence of lipid peroxidation on membrane structure. International Journal of Radiation Biology, 1979, 36: 325–334

    CAS  Google Scholar 

  23. Wratten M L, Van Ginkel G, Van’t Veld A A, Bekker A, Van Faassen E E, Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry, 1992, 31(44): 10901–10907

    Article  CAS  PubMed  Google Scholar 

  24. Chen J J, Yu B P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology & Medicine, 1994, 17(5): 411–418

    Article  CAS  Google Scholar 

  25. Richter C. Biophysical consequences of lipid peroxidation in membranes. Chemistry and Physics of Lipids, 1987, 44(2–4): 175–189

    Article  CAS  PubMed  Google Scholar 

  26. Mason R P, Walter M F, Mason P E. Effect of oxidative stress on membrane structure: Small-angle X-ray diffraction analysis. Free Radical Biology & Medicine, 1997, 23(3): 419–425

    Article  CAS  Google Scholar 

  27. Szili E J, Hong S H, Short R D. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. Biointerphases, 2015, 10(2): 029511

    Article  CAS  PubMed  Google Scholar 

  28. Lee E H, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure (London, England), 2009, 17(10): 1295–1306

    Article  CAS  Google Scholar 

  29. Cordeiro R M. Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2014, 1838(1): 438–444

    Article  CAS  Google Scholar 

  30. Miotto R, Costa E B, Trellese E B, Neto A J P, Baptista M S, Ferraz A C, Cordeiro R M. Biomembranes under oxidative stress, Insights from molecular dynamics simulations. In: Tran Q N, Arabnia H R, eds. Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications. Amsterdam: Elsevier, 2016, 197–211

    Google Scholar 

  31. Yusupov M, Van der Paal J, Neyts E C, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochimica et Biophysica Acta (BBA) -General, 2017, 1861: 839–847

    Article  CAS  Google Scholar 

  32. Yusupov M, Wende K, Kupsch S, Neyts E C, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7(1): 5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yusupov M, Yan D, Cordeiro R M, Bogaerts A. Atomic scale simulation of H2O2 permeation through aquaporin: Toward the understanding of plasma-cancer treatment. Journal of Physics. D, Applied Physics, 2018, 51(12): 125401

    Article  CAS  Google Scholar 

  34. Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A. Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. Journal of Physics. D, Applied Physics, 2018, 51(36): 365203

    Article  CAS  Google Scholar 

  35. Bogaerts A, Khosravian N, Van der Paal J, Verlackt C C W, Yusupov M, Kamaraj B, Neyts E C. Multi-level molecular modeling for plasma medicine. Journal of Physics. D, Applied Physics, 2016, 49(5): 054002

    Article  CAS  Google Scholar 

  36. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review. B, 1998, 58(11): 7260–7268

    Article  CAS  Google Scholar 

  37. Khosravian N, Kamaraj B, Neyts E C, Bogaerts A. Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations. Scientific Reports, 2016, 6(1): 19466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verlackt C C W, Van Boxem W, Dewaele D, Lemière F, Sobott F, Benedikt J, Neyts E C, Bogaerts A. Mechanisms of peptide oxidation by hydroxyl radicals: Insight at the molecular scale. Journal of Physical Chemistry C, 2017, 121(10): 5787–5799

    Article  CAS  Google Scholar 

  39. Verlackt C C W, Neyts E C, Bogaerts A. Atomic scale behavior of oxygen-based radicals in water. Journal of Physics. D, Applied Physics, 2017, 50(11): 11LT01

    Article  CAS  Google Scholar 

  40. Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review. B, 1990, 42(15): 9458–9471

    Article  CAS  Google Scholar 

  41. van Duin A C T, Dasgupta S, Lorant F, Goddard W A, Reax F F. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409

    Article  CAS  Google Scholar 

  42. Yusupov M, Neyts E C, Khalilov U, Snoeckx R, van Duin A C T, Bogaerts A. Atomic scale simulations of plasma species interacting with bacterial cell walls. New Journal of Physics, 2012, 14(9): 093043

    Article  CAS  Google Scholar 

  43. Yusupov M, Bogaerts A, Huygh S, Snoeckx S, van Duin A C T, Neyts E C. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. Journal of Physical Chemistry C, 2013, 117(11): 5993–5998

    Article  CAS  Google Scholar 

  44. Yusupov M, Neyts E C, Verlackt C C, Khalilov U, van Duin A C T, Bogaerts A. Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species: A reactive molecular dynamics study. Plasma Processes and Polymers, 2015, 12(2): 162–171

    Article  CAS  Google Scholar 

  45. Babaeva N Y, Ning N, Graves D B, Kushner M J. Ion activation energy delivered to wounds by atmospheric pressure dielectricbarrier discharges: Sputtering of lipid-like surfaces. Journal of Physics. D, Applied Physics, 2012, 45(11): 115203

    Article  CAS  Google Scholar 

  46. Van der Paal J, Aernouts S, van Duin A C T, Neyts E C, Bogaerts A. Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: A reactive molecular dynamics simulation for plasma medicine. Journal of Physics. D, Applied Physics, 2013, 46(39): 395201

    Article  CAS  Google Scholar 

  47. Van der Paal J, Verlackt C C, Yusupov M, Neyts E C, Bogaerts A. Structural modification of the skin barrier by OH radicals: A reactive molecular dynamics study for plasma medicine. Journal of Physics. D, Applied Physics, 2015, 48(15): 155202

    Article  CAS  Google Scholar 

  48. Abolfath R M, Biswas P K, Rajnarayanam R, Brabec T, Kodym R, Papiez L. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. Journal of Physical Chemistry A, 2012, 116(15): 3940–3945

    Article  CAS  Google Scholar 

  49. Verlackt C C M, Neyts E C, Jacob T, Fantauzzi D, Golkaram M, Shin Y K, van Duin A C T, Bogaerts A. Atomic-scale insight in the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New Journal of Physics, 2015, 17 (10): 103005

    Article  CAS  Google Scholar 

  50. Yusupov M, Neyts E C, Simon P, Bergiyorov G, Snoeckx R, van Duin A C T, Bogaerts A. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(2): 025205

    Article  CAS  Google Scholar 

  51. Khosravian N, Bogaerts A, Huygh S, Yusupov M, Neyts E C. How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases, 2015, 10(2): 029501

    Article  CAS  Google Scholar 

  52. Berger O, Edholm O, Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 1997, 72(5): 2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M Jr, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197

    Article  CAS  Google Scholar 

  54. Yu W, He X, Vanommeslaeghe K, MacKerell A D Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Gunsteren W F, Berendsen H J C. Groningen Molecular Simulation (GROMOS) Library Manual. Groningen, The Netherlands: Biomos, 1987, 1–221

    Google Scholar 

  56. Marrink S J, Risselada H J, Yefimov S, Tieleman D P, De Vries A H. The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 2007, 111(27): 7812–7824

    Article  CAS  Google Scholar 

  57. Åqvist J, Warshel A. Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chemical Reviews, 1993, 93(7): 2523–2544

    Article  Google Scholar 

  58. Neyts E C, Yusupov M, Verlackt C C, Bogaerts A. Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(29): 293001

    Article  CAS  Google Scholar 

  59. Möller M N, Li Q, Lancaster J R Jr, Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life, 2007, 59(4): 243–248

    Article  CAS  PubMed  Google Scholar 

  60. Subczynski W K, Lomnicka M, Hyde J S. Permeability of nitric oxide through lipid bilayer membranes. Free Radical Research, 1996, 24(5): 343–349

    Article  CAS  PubMed  Google Scholar 

  61. Shinitzky M. Membrane fluidity in malignancy adversative and recuperative. Biochimica et Biophysica Acta (BBA) -Revue Canadienne, 1984, 738: 251–261

    Article  CAS  Google Scholar 

  62. Reis A, Domingues M R M, Amado F M L, Ferrer-Correia A J V, Domingues P. Separation of peroxidation products of diacylphosphatidylcholines by reversed-phase liquid chromatographymass spectrometry. Biomedical Chromatography, 2005, 19(2): 129–137

    Article  CAS  PubMed  Google Scholar 

  63. Haluska C K, Baptista M S, Fernades A U, Schroder A P, Marques C M, Itri R. Photo-activated phase separation in giant vesicles made from different lipid mixture. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2012, 1818: 666–672

    Article  CAS  Google Scholar 

  64. Lackmann J W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow J E. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. Journal of the Royal Society, Interface, 2013, 10(89): 20130591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chung T Y, Ning N, Chu J W, Graves D B, Bartis E, Seog J, Oehrlein G S. Plasma deactivation of endotoxic biomolecules: Vacuum ultraviolet photon and radical beam effects on Lipid A. Plasma Processes and Polymers, 2013, 10(2): 167–180

    Article  CAS  Google Scholar 

  66. Bartis E A J, Graves D B, Seog J, Oehrlein G S. Atmospheric pressure plasma treatment of lipopolysaccharide in a controlled environment. Journal of Physics. D, Applied Physics, 2013, 46(31): 312002 doi:10.1088/0022-3727/46/31/312002

    Article  CAS  Google Scholar 

  67. Bartis E A J, Barrett C, Chung T Y, Ning N, Chu J W, Graves D B, Seog J, Oehrlein G S. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma. Journal of Physics. D, Applied Physics, 2014, 47(4): 045202

    Article  CAS  Google Scholar 

  68. Park J H, Kumar N, Park D H, Yusupov M, Neyts E C, Verlackt C C W, Bogaerts A, Kang M H, Uhm H S, Choi E H, et al. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Scientific Reports, 2015, 5(1): 13849

    Article  PubMed  Google Scholar 

  69. Marschewski M, Hirschberg J, Omairi T, Hofft O, Viol W, Emmert S, Maus-Friedrichs W. Electron spectroscopic analysis of the human lipid skin barrier: Cold atmospheric plasma-induced changes in lipid composition. Experimental Dermatology, 2012, 21 (12): 921–925

    Article  CAS  PubMed  Google Scholar 

  70. Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K. Chemical modification of amino acids by atmospheric-pressure Cold plasma in aqueous solution. Journal of Physics. D, Applied Physics, 2014, 47(28): 285403

    Article  CAS  Google Scholar 

  71. Madugundu G S, Cadet J, Wagner J R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 2014, 42(11): 7450–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hong S H, Szili E J, Jenkins A T A, Short R D. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics. D, Applied Physics, 2014, 47(36): 362001

    Article  CAS  Google Scholar 

  73. Szili E J, Bradley J W, Short R D. A ‘tissue model’ to study the plasma delivery of reactive oxygen species. Journal of Physics. D, Applied Physics, 2014, 47(15): 152002

    Article  CAS  Google Scholar 

  74. Hammer M U, Forbrig E, Kupsch S, Weltmann K D, Reuter S. Influence of plasma treatment on the structure and function of lipids. Plasma Medicine, 2013, 3(1–2): 97–114

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Bogaerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogaerts, A., Yusupov, M., Razzokov, J. et al. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling. Front. Chem. Sci. Eng. 13, 253–263 (2019). https://doi.org/10.1007/s11705-018-1786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1786-8

Keywords

Navigation