Skip to main content
Log in

Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Though they reduce microorganism growth, current hospital disinfectants also damage many of today’s modern electronic devices such as tablets and smartphones. Herein, the efficacy of a new chlorhexidine digluconate gel (CDG) was tested as a disinfectant for mobile and electronic devices in a clinical environment. Specifically, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus were used to infect the screen of eight smartphones. The CDG was prepared at concentrations of 2%, 4% and 6%, and tested on paper disks infected with these bacteria before being tested on the smartphones. The devices were disinfected with the CDG gel (4%) at two times: immediately and after 5 min of the bacterial contamination. In all cases, the CDG gel eliminated 100% of gram-positive and gram-negative microorganisms compared to the control (without any agent). In addition, the gel did not damage the smartphones. Therefore, our study suggests that the CDG gel may be applied to disinfect a wide range of electronic devices for health care professionals in the hospital environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Madden G R, Weinstein R A, Sifri C D. Diagnostic stewardship for healthcare-associated infections: Opportunities and challenges to safely reduce test use. Infection Control and Hospital Epidemiology, 2018, 39(2): 214–218

    Article  PubMed  Google Scholar 

  2. Grant M C, Yang D, Wu C L, Makary M A, Wick E C. Impact of enhanced recovery after surgery and fast track surgery pathways on healthcare-associated infections. Results from a systematic review and meta-analysis. Annals of Surgery, 2017, 265(1): 68–79

    PubMed  Google Scholar 

  3. Jasovský D, Littmann J, Zorzet A, Cars O. Antimicrobial resistancea threat to the world’s sustainable development. Upsala Journal of Medical Sciences, 2016, 121(3): 159–164

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lemmen S W, Häfner H, Zolldann D, Stanzel S, Lütticken R. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment. Journal of Hospital Infection, 2004, 56(3): 191–197

    Article  CAS  PubMed  Google Scholar 

  5. Deak D, Outterson K, Powers J H, Kesselheim A S. Progress in the fight against multidrug-resistant bacteria? A review of U.S. food and drug administration—approved antibiotics, 2010–2015. Annals of Internal Medicine, 2016, 165(5): 363–372

    Article  PubMed  Google Scholar 

  6. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, 2006, 6(1): 130

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hammon M, Kunz B, Dinzl V, Kammerer F J, Schwab S A, Bogdan C, Uder M, Schlechtweg P M. Practicability of hygienic wrapping of touchscreen operated mobile devices in a clinical setting. PLoS One, 2014, 9(9): e106445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeglin L H. Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Frontiers in Microbiology, 2015, 6(454): 454

    PubMed  PubMed Central  Google Scholar 

  9. Zakai S, Mashat A, Abumohssin A, Samarkandi A, Almaghrabi B, Barradah H, Jiman-Fatani A. Bacterial contamination of cell phones of medical students at King Abdulaziz University, Jeddah, Saudi Arabia. Journal of Microscopy and Ultrastructure, 2016, 4(3): 143–146

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sorensen J A, Doherty F M, Newman M G, Flemmig T F. Gingival enhancement in fixed prosthodontics. Part I: Clinical findings. Journal of Prosthetic Dentistry, 1991, 65(1): 100–107

    Article  CAS  PubMed  Google Scholar 

  11. Jones C G. Chlorhexidine: Is it still the gold standard? Periodontology 2000, 1997, 15(1): 55–62

    Article  CAS  PubMed  Google Scholar 

  12. Supranoto S C, Slot D E, Addy M, Van der Weijden G A. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: A systematic review. International Journal of Dental Hygiene, 2015, 13(2): 83–92

    Article  CAS  PubMed  Google Scholar 

  13. Vitkov L, Hermann A, Krautgartner W D, Herrmann M, Fuchs K, Klappacher M, Hannig M. Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microscopy Research and Technique, 2005, 68(2): 85–89

    Article  CAS  PubMed  Google Scholar 

  14. Ferraz C C R, Gomes B P F A, Zaia A A, Teixeira F B, Souza-Filho F J. Comparative study of the antimicrobial efficacy of chlorhexidine gel, chlorhexidine solution and sodium hypochlorite as endodontic irrigants. Brazilian Dental Journal, 2007, 18(4): 294–298

    Article  PubMed  Google Scholar 

  15. Kim J Y, Song J Y, Lee E J, Park S K. Rheological properties and microstructures of Carbopol gel network system. Colloid & Polymer Science, 2003, 281(7): 614–623

    Article  CAS  Google Scholar 

  16. Zheng Y, Ouyang W Q, Wei Y P, Syed S F, Hao C S, Wang B Z, Shang Y H. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study. International Journal of Nanomedicine, 2016, 11: 5971–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mathew J I, Cadnum J L, Sankar T, Jencson A L, Kundrapu S, Donskey C J. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices. American Journal of Infection Control, 2016, 44(6): 724–726

    Article  CAS  PubMed  Google Scholar 

  18. Gashaw M, Abtew D, Addis Z. Prevalence and antimicrobial susceptibility pattern of bacteria isolated from mobile phones of health care professionals working in gondar town health centers. International Scholarly Research Notices, 2014, 2014: 1–6

    Article  Google Scholar 

  19. Shakir I A, Patel N H, Chamberland R R, Kaar S G. Investigation of cell phones as a potential source of bacterial contamination in the operating room. Journal of Bone and Joint Surgery, 2015, 97(3): 225–231

    Article  PubMed  Google Scholar 

  20. A-sasutjarit R, Sirivat A, Vayumhasuwan P. Viscoelastic properties of Carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. Pharmaceutical Research, 2005, 22(12): 2134–2140

    Article  CAS  PubMed  Google Scholar 

  21. Jana S, Manna S, Nayak A K, Sen K K, Basu S K. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids and Surfaces B: Biointerfaces, 2014, 114: 36–44

    Article  CAS  PubMed  Google Scholar 

  22. Barry B W, Meyer M C. The rheological properties of carbopol gels. I. Continuous shear and creep properties of carbopol gels. International Journal of Pharmaceutics, 1979, 2(1): 1–25

    Article  CAS  Google Scholar 

  23. Santos I R M, Moreira A C A, Costa M G C, Barbosa M C. Effect of 0.12% chlorhexidine in reducing microorganisms found in aerosol used for dental prophylaxis of patients submitted to fixed orthodontic treatment. Dental Press Journal of Orthodontics, 2014, 19(3): 95–101

    Article  PubMed  PubMed Central  Google Scholar 

  24. McDonnell G, Russell A D. Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 1999, 12(1): 147–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M, Rossi C. Development of mucoadhesive patches for buccal administration of ibuprofen. Journal of Controlled Release, 2004, 99(1): 73–82

    Article  CAS  PubMed  Google Scholar 

  26. Velasquez Reyes D C, Bloomer M, Morphet J. Prevention of central venous line associated bloodstream infections in adult intensive care units: A systematic review. Intensive & Critical Care Nursing, 2017, 43: 12–22

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the team from the bacteriology sector of the Clinical Laboratory of University Hospital of West of Paraná for laboratory evaluation and aid of the application of data collection. Anderson Oliveira Lobo and Fernanda Roberta Marciano would like to thank the National Council for Scientific and Technological Development (CNPq grant numbers: AOL ‒ 303752/2017-3 and FRM ‒ 304133/2017-5), Coordination for the Improvement of Higher Education Personnel (CAPES, grant numbers 88881.120138/2016-01 and 88881.120221/2016-01) and to the Universidade Brasil for scholarships. English language corrections were provided by Ms. Jessica Fitzgerald, a writing consultant for the Chemical Engineering Writing Center at Northeastern University.

This study did not count on funding fomenting agencies. There are no conflicts of interest by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Oliveira Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz de Oliveira, R., da Rosa Gioppo, N.M., Oliveira de Carvalho, J. et al. Decontamination of mobile phones and electronic devices for health care professionals using a chlorhexidine/carbomer 940® gel. Front. Chem. Sci. Eng. 13, 192–198 (2019). https://doi.org/10.1007/s11705-018-1728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1728-5

Keywords

Navigation