Skip to main content
Log in

Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

An appropriate co-catalyst can significantly promote the photocatalytic efficacy, but this has been seldom studied in the visible-light photocatalysis combined with ozone, namely photocatalytic ozonation. In this work, a dendritic bismuth vanadium tetraoxide (BiVO4) material composited with highly dispersed MnOx nanoparticles was synthesized, and its catalytic activity is 86.6% higher than bare BiVO4 in a visible light and ozone combined process. Catalytic ozonation experiments, ultraviolet- visible (UV-Vis) diffuse reflectance spectra and photoluminescence spectra jointly indicate that MnOx plays a triple role in this process. MnOx strengthens the light adsorption and promotes the charge separation on the composite material, and it also shows good activity in catalytic ozonation. The key reactive species in this process is $OH, and various pathways for its generation in this process is proposed. This work provides a new direction of catalyst preparation and pushes forward the application of photocatalytic ozonation in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bora L V, Mewada R K. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renewable & Sustainable Energy Reviews, 2017, 76: 1393–1421

    Article  CAS  Google Scholar 

  2. Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 2007, 315(5813): 804–807

    Article  CAS  PubMed  Google Scholar 

  4. Abbas N, Shao G N, Imran S M, Haider MS, Kim H T. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse. Frontiers of Chemical Science and Engineering, 2016, 10(3): 405–416

    Article  CAS  Google Scholar 

  5. Jin Z L, Zhang X J, Li Y X, Li S B, Lu G X. 5.1%Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications, 2007, 8(8): 1267–1273

    Article  CAS  Google Scholar 

  6. Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45(9): 2603–2636

    Article  CAS  PubMed  Google Scholar 

  7. Schultz D M, Yoon T P. Solar synthesis: Prospects in visible light photocatalysis. Science, 2014, 343(6174): 985–995

    Article  CAS  Google Scholar 

  8. Liu X, Wu X L, Li J, Liu L Y, Ma Y Q. Simple synthesis of oxygen functional layered carbon nitride with near-infrared light photocatalytic activity. Catalysis Communications, 2017, 91: 21–24

    Article  CAS  Google Scholar 

  9. Sun X M, Wu J, Li Q F, Liu Q Z, Qi Y F, You L, Ji Z, He P, Sheng P F, Ren J X, et al. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs. Applied Catalysis B: Environmental, 2017, 218: 80–90

    Article  CAS  Google Scholar 

  10. Mills A, LeHunte S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A Chemistry, 1997, 108(1): 1–35

    Article  CAS  Google Scholar 

  11. Zhang M W, Luo Z S, Zhou M, Zhang G G, Alamry K A, Taib L A, Asiri A M, Wang X C. Ni-Co layered double hydroxides cocatalyst for sustainable oxygen photosynthesis. Applied Catalysis B: Environmental, 2017, 210: 454–461

    Article  CAS  Google Scholar 

  12. Wang B, Guo X N, Jin G Q, Guo X Y. Visible-light-enhanced photocatalytic sonogashira reaction over silicon carbide supported Pd nanoparticles. Catalysis Communications, 2017, 98: 81–84

    Article  CAS  Google Scholar 

  13. Yang J H, Wang D G, Han H X, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi J, Li C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290: 151–157

    Article  CAS  Google Scholar 

  15. Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(2): 1432

    Article  CAS  PubMed  Google Scholar 

  16. Gordon T R, Cargnello M, Paik T, Mangolini F, Weber R T, Fornasiero P, Murray C B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society, 2012, 134(15): 6751–6761

    Article  CAS  PubMed  Google Scholar 

  17. Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2005, 6(4): 264–273

    Article  CAS  Google Scholar 

  18. Xiao J D, Xie Y B, Cao H B. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 2015, 121: 1–17

    Article  CAS  PubMed  Google Scholar 

  19. Xiao J D, Xie Y B, Cao H B, Wang Y Q, Zhao Z J. g-C3N4 triggered super synergy between photocatalysis and ozonation attributed to promoted (OH)-O-center dot generation. Catalysis Communications, 2015, 66: 10–14

    Article  CAS  Google Scholar 

  20. Xiao J D, Xie Y B, Nawaz F, Jin S, Duan F, Li M J, Cao H B. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental, 2016, 181: 420–428

    Article  CAS  Google Scholar 

  21. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 2010, 99(1-2): 27–42

    Article  CAS  Google Scholar 

  22. Rekha M, Kathyayini H, Nagaraju N. Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines. Frontiers of Chemical Science and Engineering, 2013, 7(4): 415–421

    Article  CAS  Google Scholar 

  23. Xiao J D, Xie Y B, Nawaz F, Wang Y, Du P H, Cao H B. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Applied Catalysis B: Environmental, 2016, 183: 417–425

    Article  CAS  Google Scholar 

  24. Xiao J, Rabeah J, Yang J, Xie Y, Cao H, Brückner A. Fast electron transfer and $OH formation: Key features for high activity in visiblelight-driven ozonation with C3N4 catalysts. ACS Catalysis, 2017, 7 (9): 6198–6206

    Article  CAS  Google Scholar 

  25. Afzal S, Quan X, Chen S, Wang J, Muhammad D. Synthesis of manganese incorporated hierarchical mesoporous silica nanosphere with fibrous morphology by facile one-pot approach for efficient catalytic ozonation. Journal of Hazardous Materials, 2016, 318: 308–318

    Article  CAS  PubMed  Google Scholar 

  26. Yang S, Wang C, Li J, Yan N, Ma L, Chang H. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110: 71–80

    Article  CAS  Google Scholar 

  27. Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, et al. Photoexcited hole transfer to a MnOx cocatalyst on a SrTiO3 photoelectrode during oxygen evolution studied by in situ X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2014, 118(42): 24302–24309

    Article  CAS  Google Scholar 

  28. Kim H I, Kim H, Weon S, Moon G, Kim J H, Choi W. Robust Co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catalysis, 2016, 6(12): 8350–8360

    Article  CAS  Google Scholar 

  29. Nawaz F, Cao H B, Xie Y B, Xiao J B, Chen Y, Ghazi Z A. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol. Chemosphere, 2017, 168: 1457–1466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (8172043), the National Science Fund for Distinguished Young Scholars of China (51425405), and Chinese Academy of Sciences (ZDRWZS-2016-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, X., Cao, H. et al. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Front. Chem. Sci. Eng. 13, 185–191 (2019). https://doi.org/10.1007/s11705-018-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1713-z

Keywords

Navigation