Skip to main content
Log in

Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H2) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaporowski B, Szczerbowski R. Energy analysis of technological systems of natural gas fired combined heat-and-power plants. Applied Energy, 2003, 75(1–2): 43–50

    Article  Google Scholar 

  2. Rousseau S, Lemoult B, Tazerout M. Combustion characteristics of natural gas in a lean burn spark-ignition engine. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 1999, 213(5): 481–489

    Article  Google Scholar 

  3. Blarigan P V, Keller J O. A hydrogen fueled internal combustion engine designed for single speed/power operation. International Journal of Hydrogen Energy, 1998, 23(7): 603–609

    Article  Google Scholar 

  4. Akansu S O, Dulger Z, Kahraman N, Veziroglu T N. Internal combustion engines fuelled by natural gas-hydrogen mixtures. International Journal of Hydrogen Energy, 2004, 29(14): 1527–1539

    Article  CAS  Google Scholar 

  5. Scholte T G, Vaags P B. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combustion and Flame, 1959, 3: 511–524

    Article  CAS  Google Scholar 

  6. Liu Y, Lenze B, Leuckel W. Investigation on the laminar and turbulent burning velocities of premixed lean and rich flames of methane-hydrogen-air mixtures. Prog Astronaut Aeronaut, 1991, 131: 259–274

    CAS  Google Scholar 

  7. Milton B E, Keck J C. Laminar burning velocities in stoichiometric hydrogen and hydrogen-hydrocarbon gas mixtures. Combustion and Flame, 1984, 58(1): 13–22

    Article  CAS  Google Scholar 

  8. Yu G, Law C K, Wu C K. Laminar flame speed of hydrocarbon + air mixtures with hydrogen addition. Combustion and Flame, 1986, 63(3): 339–347

    Article  CAS  Google Scholar 

  9. Ren J Y, Qin W, Egolfopoulos F N, Tsotsis T T. Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combustion and Flame, 2001, 124(4): 717–720

    Article  CAS  Google Scholar 

  10. Ren J Y, Qin W, Egolfopoulos F N, Mak H, Tsotsis T T. Methane reforming and its potential effect on the efficiency and pollutant emissions of lean methane-air combustion. Chemical Engineering Science, 2001, 56(4): 1541–1549

    Article  CAS  Google Scholar 

  11. Halter F, Chauveau C, Djebaïli-Chaumeix N, Gökalp I. DjebaIli-Chaumeix N, Gokalp I. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proceedings of the Combustion Institute, 2005, 30(1): 201–208

    Article  Google Scholar 

  12. Law C K, Kwon O C. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. International Journal of Hydrogen Energy, 2004, 29(8): 867–879

    Article  CAS  Google Scholar 

  13. Miller D R, Evers R L, Skinner G B. Effects of various inhibitors on hydrogen-air flame speeds. Combustion and Flame, 1963, 7: 137–142

    Article  CAS  Google Scholar 

  14. Huang Z H, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D M. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame, 2006, 146(1-2): 302–311

    Article  CAS  Google Scholar 

  15. Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets. Progress in Energy and Combustion Science, 2000, 26(4–6): 459–505

    Article  CAS  Google Scholar 

  16. Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame, 2007, 151(1–2): 104–119

    Article  CAS  Google Scholar 

  17. Liu D D S, Macfarlane R. Laminar burning velocities of hydrogen-air and hydrogen-air-steam flames. Combustion and Flame, 1983, 49(1–3): 59–71

    Article  CAS  Google Scholar 

  18. Ilbas M, Crayford A P, Yilmaz I, Bowen P J, Syred N. Laminar burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study. International Journal of Hydrogen Energy, 2006, 31(12): 1768–1779

    Article  CAS  Google Scholar 

  19. Takahashi F, Mizomoto M, Ikai S. Laminar burning velocities of hydrogen/oxygen/inert gas mixtures. Alternative Energy Sources. III. Nuclear Energy/Synthetic Fuels, 1983, 5: 447

    Google Scholar 

  20. Dowdy D R, Smith D B, Taylor S C, Williams A. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures. Proceedings of the Combustion Institute, 1990, 23: 325–332

    Google Scholar 

  21. Aung K T, Hassan M I, Faeth G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combustion and Flame, 1997, 109(1–2): 1–24

    Article  CAS  Google Scholar 

  22. Lamoureux N, Djebaili-Chaumeix N, Paillard C E. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method. Experimental Thermal and Fluid Science, 2003, 27(4): 385–393

    Article  CAS  Google Scholar 

  23. Huang Z H, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D M. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame, 2006, 146(1–2): 302–311

    Article  CAS  Google Scholar 

  24. Vagelopoulos C M, Egolfopoulos F N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proceedings of the Combustion Institute, 1994, 25(1): 1317–1323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qulan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Zhou, Q., Zhang, X. et al. Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures. Front. Chem. Eng. China 4, 417–422 (2010). https://doi.org/10.1007/s11705-010-0515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-0515-8

Keywords

Navigation