Skip to main content

Advertisement

Log in

Biochemical implications of robotic surgery: a new frontier in the operating room

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Robotic surgery represents a milestone in surgical procedures, offering advantages such as less invasive methods, elimination of tremors, scaled motion, and 3D visualization. This in-depth analysis explores the complex biochemical effects of robotic methods. The use of pneumoperitoneum and steep Trendelenburg positioning can decrease pulmonary compliance and splanchnic perfusion while increasing hypercarbia. However, robotic surgery reduces surgical stress and inflammation by minimizing tissue trauma. This contributes to faster recovery but may limit immune function. Robotic procedures also limit ischemia–reperfusion injury and oxidative damage compared to open surgery. They also help preserve native antioxidant defenses and coagulation. In a clinical setting, robotic procedures reduce blood loss, pain, complications, and length of stay compared to traditional procedures. However, risks remain, including device failure, the need for conversion to open surgery and increased costs. On the oncology side, there is still debate about margins, recurrence, and long-term survival. The advent of advanced technologies, such as intraoperative biosensors, localized drug delivery systems, and the incorporation of artificial intelligence, may further improve the efficiency of robotic surgery. However, ethical dilemmas regarding patient consent, privacy, access, and regulation of this disruptive innovation need to be addressed. Overall, this review sheds light on the complex biochemical implications of robotic surgery and highlights areas that require additional mechanistic investigation. It presents a comprehensive approach to responsibly maximize the potential of robotic surgery to improve patient outcomes, integrating technical skill with careful consideration of physiological and ethical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data availability correspondence should be addressed to noorazarian_a@khoyums.ac.ir.

References

  1. Bliznakova K, Kolev N, Zlatarov A, Kalinov T, Georgiev T (2023) Feasibility and safety of robotic-assisted surgery for rectal cancer: short-term outcomes of a pilot study with da Vinci Xi platform during COVID-19. Chirurgia (Bucur) 118:27–38. https://doi.org/10.21614/chirurgia.2688

    Article  PubMed  Google Scholar 

  2. Kerray F, Yule S (2021) Rise of the machines: human factors and training for robotic-assisted surgery. BMJ Surg Interv Health Technol 3:e000100. https://doi.org/10.1136/bmjsit-2021-000100

    Article  PubMed  PubMed Central  Google Scholar 

  3. Villalobos R, Maestre Y, González Barranquero A, Olsina J (2022) V-038 inguinal tep with articulated instruments: beyond conventional laparoscopy, closer to robotic surgery. Br J Surg. https://doi.org/10.1093/bjs/znac308.290

    Article  Google Scholar 

  4. Kumar P, Talele S, Deshpande S, Ghyar R, Rout S, Ravi B (2023) Design, analysis and experimental validation of a novel 7-degrees of freedom instrument for laparoscopic surgeries. Ann Biomed Eng 51:751–770. https://doi.org/10.1007/s10439-022-03086-w

    Article  PubMed  Google Scholar 

  5. Kayani B, Haddad FS (2019) Robotic total knee arthroplasty: clinical outcomes and directions for future research. Bone Joint Res 8:438–442. https://doi.org/10.1302/2046-3758.810.BJR-2019-0175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marino MV, Shabat G, Gulotta G, Komorowski AL (2018) From illusion to reality: a brief history of robotic surgery. Surg Innov 25:291–296. https://doi.org/10.1177/1553350618771417

    Article  PubMed  Google Scholar 

  7. Chan F (2018) Robotic-assisted surgical procedures are the future of gynaecology in Australasia. Aust N Z J Obstet Gynaecol 58:371–374. https://doi.org/10.1111/ajo.12819

    Article  PubMed  Google Scholar 

  8. Danesh H, Rahmati J, Mahdieh M, Hemadi SM, Bahmani A (2022) Medical and chemical evaluation of robotic surgery methods; a review study. Rom J Mil Med 125:542–551. https://doi.org/10.55453/rjmm.2022.125.4.2

    Article  Google Scholar 

  9. Rivas-Lopez R, Sandoval-Garcia-Travesi FA (2020) Robotic surgery in gynecology: review of literature. Cir Cir 88:107–116. https://doi.org/10.24875/CIRU.18000636

    Article  PubMed  Google Scholar 

  10. Krzystek-Korpacka M, Zawadzki M, Lewandowska P, Szufnarowski K, Bednarz-Misa I, Jacyna K et al (2019) Distinct chemokine dynamics in early postoperative period after open and robotic colorectal surgery. J Clin Med. https://doi.org/10.3390/jcm8060879

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mazzella A, Casiraghi M, Galetta D, Cara A, Maisonneuve P, Petrella F et al (2023) How much stress does a surgeon endure? The effects of the robotic approach on the autonomic nervous system of a surgeon in the modern era of thoracic surgery. Cancers (Basel). https://doi.org/10.3390/cancers15041207

    Article  PubMed  Google Scholar 

  12. Cepolina F, Razzoli RP (2022) An introductory review of robotically assisted surgical systems. Int J Med Robot 18:e2409. https://doi.org/10.1002/rcs.2409

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang QB, Zhao C, Luo XM (2011) Ergonomic analysis of the master of minimally invasive surgical robot. Adv Mater Res 418–420:2018–2023. https://doi.org/10.4028/www.scientific.net/AMR.418-420.2018

    Article  Google Scholar 

  14. Yang Y, Song L, Huang J, Cheng X, Luo Q (2021) A uniportal right upper lobectomy by three-arm robotic-assisted thoracoscopic surgery using the da Vinci (Xi) surgical system in the treatment of early-stage lung cancer. Transl Lung Cancer Res 10:1571–1575. https://doi.org/10.21037/tlcr-21-207

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stefano GB (2017) Robotic surgery: fast forward to telemedicine. Med Sci Monit 23:1856. https://doi.org/10.12659/msm.904666

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar S (2016) Open versus robotic prostatectomy. Indian J Urol 32:253–254. https://doi.org/10.4103/0970-1591.191233

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brassetti A, Ragusa A, Tedesco F, Prata F, Cacciatore L, Iannuzzi A et al (2023) Robotic surgery in urology: history from PROBOT® to HUGOTM. Sensors. https://doi.org/10.3390/s23167104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goh EZ, Ali T (2022) Robotic surgery: an evolution in practice. J Surg Prot Res Methodol. https://doi.org/10.1093/jsprm/snac003

    Article  Google Scholar 

  19. Chen J, Xu H, Lin S, He S, Tang K, Xiao Z et al (2022) Robot-assisted pyeloplasty and laparoscopic pyeloplasty in children: a comparison of single-port-plus-one and multiport surgery. Front Pediatr 10:957790. https://doi.org/10.3389/fped.2022.957790

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yagisawa T, Takagi T, Yoshida K, Hata K, Iizuka J, Muromiya Y et al (2022) Surgical outcomes of robot-assisted laparoscopic partial nephrectomy for cystic renal cell carcinoma. J Robot Surg 16:649–654. https://doi.org/10.1007/s11701-021-01292-7

    Article  PubMed  Google Scholar 

  21. Packiam VT, Barashi NS, Shalhav AL (2018) Robot-assisted laparoscopic adrenalectomy. J Endourol 32:S82–S87. https://doi.org/10.1089/end.2017.0721

    Article  PubMed  Google Scholar 

  22. Hashizume M (2005) Robot-assisted surgery. Geka Gakkai Zasshi 106:689–93

  23. Grimminger PP, Hadzijusufovic E, Ruurda JP, Lang H, van Hillegersberg R (2018) The da Vinci Xi robotic four-arm approach for robotic-assisted minimally invasive esophagectomy. Thorac Cardiovasc Surg 66:407–409. https://doi.org/10.1055/s-0038-1636933

    Article  PubMed  Google Scholar 

  24. Rodríguez RAC, Noguera RJS (2021) New horizons in robotic surgery: da vinci begins to compete. Revista Urol Colomb Colomb Urol J 30:e153–e154. https://doi.org/10.1055/s-0041-1737013

    Article  Google Scholar 

  25. Pathirana S, Kam P (2018) Anaesthetic issues in robotic-assisted minimally invasive surgery. Anaesth Intensive Care 46:25–35. https://doi.org/10.1177/0310057X1804600105

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Xu Z, Wu A, Dong Y, Zhang Y, Yue Y et al (2015) 2-Deoxy-D-glucose enhances anesthetic effects in mice. Anesth Analg 120:312–319. https://doi.org/10.1213/ANE.0000000000000520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luz AL, Lagido C, Hirschey MD, Meyer JN (2016) In vivo determination of mitochondrial function using luciferase-expressing Caenorhabditis elegans: contribution of oxidative phosphorylation, glycolysis, and fatty acid oxidation to toxicant-induced dysfunction. Curr Protoc Toxicol. https://doi.org/10.1002/cptx.10

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sheridan RL, Prelack K, Szyfelbein SK (1997) Neuromuscular blockade does not decrease oxygen consumption or energy expenditure beyond sedation in the mechanically ventilated child. J Intensive Care Med 12:321–323. https://doi.org/10.1177/088506669701200606

    Article  Google Scholar 

  29. Nair AS, Christopher A, Kotthapalli KK, Mantha SP (2021) Laparoscopic surgeries and carbon dioxide pneumoperitoneum during COVID-19 pandemic: problems and solutions. Med Gas Res 11:46. https://doi.org/10.4103/2045-9912.310060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Badani KK, Shapiro EY, Berg WT, Kaufman S, Bergman A, Wambi C et al (2013) A pilot study of laparoscopic Doppler ultrasound probe to map arterial vascular flow within the neurovascular bundle during robot-assisted radical prostatectomy. Prostate Cancer 2013:810715. https://doi.org/10.1155/2013/810715

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aditianingsih D, Mochtar CA, Lydia A, Siregar NC, Margyaningsih NI, Madjid AS et al (2020) Effects of low versus standard pressure pneumoperitoneum on renal syndecan-1 shedding and VEGF receptor-2 expression in living-donor nephrectomy: a randomized controlled study. BMC Anesthesiol 20:37. https://doi.org/10.1186/s12871-020-0956-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson DJ, Brooks DC, Pressler VM, Hulton NR, Colpoys MF, Smith RJ et al (1986) Hypothermic anesthesia attenuates postoperative proteolysis. Ann Surg 204:419–429. https://doi.org/10.1097/00000658-198610000-00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slavin M, Goldstein A, Raguan B, Rudnicki Y, Avital S, White I (2022) Postoperative CRP levels can rule out anastomotic leaks in Crohn’s disease patients. J Pers Med. https://doi.org/10.3390/jpm12010054

    Article  PubMed  PubMed Central  Google Scholar 

  34. Preisser F, Nazzani S, Mazzone E, Marchioni M, Bandini M, Tian Z et al (2019) Comparison of open versus robotically assisted cytoreductive radical prostatectomy for metastatic prostate cancer. Clin Genitourin Cancer 17:e939–e945. https://doi.org/10.1016/j.clgc.2019.05.022

    Article  PubMed  Google Scholar 

  35. Fan S, Zhong JL, Chen WX, Chen WL, Li QX, Wang YY et al (2017) Postoperative immune response and surgical stress in selective neck dissection: comparison between endoscopically assisted dissection and open techniques in cT1-2N0 oral squamous cell carcinoma. J Craniomaxillofac Surg 45:1112–1116. https://doi.org/10.1016/j.jcms.2016.11.021

    Article  PubMed  Google Scholar 

  36. He L, Qing F, Li M, Lan D (2021) Effects of laparoscopic and traditional open surgery on the levels of IL-6, TNF-alpha, and Gal-3 in patients with thyroid cancer. Gland Surg 10:1085–1092. https://doi.org/10.21037/gs-21-60

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mueller AA, Kalak N, Schwenzer-Zimmerer K, Holsboer-Trachsler E, Brand S (2014) Cortisol levels and sleep patterns in infants with orofacial clefts undergoing surgery. Neuropsychiatr Dis Treat 10:1965–1972. https://doi.org/10.2147/NDT.S71785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleszar MG, Fortuna P, Zawadzki M, Hodurek P, Bednarz-Misa I, Witkiewicz W et al (2021) Sex, type of surgery, and surgical site infections are associated with perioperative cortisol in colorectal cancer patients. J Clin Med. https://doi.org/10.3390/jcm10040589

    Article  PubMed  PubMed Central  Google Scholar 

  39. Landesberg G, London MJ (2016) The enigma of postoperative troponin elevation. Anesth Analg 123:5–7. https://doi.org/10.1213/ANE.0000000000001336

    Article  PubMed  Google Scholar 

  40. Sjodahl R, Davidson T, Aldman A, Lennmarken C, Kammerlind AS, Gustavsson E, et al. (2022) [Robotic-assisted pelvic and renal surgery—an overview]. Lakartidningen. p119

  41. Neidert MC, Losa M, Regli L, Sarnthein J (2015) Elevated serum creatine kinase after neurosurgeries in lateral position with intraoperative neurophysiological monitoring is associated with OP duration. BMI and age Clin Neurophysiol 126:2026–2032. https://doi.org/10.1016/j.clinph.2014.12.019

    Article  PubMed  Google Scholar 

  42. Tsuchiya Y, Munakata S, Tsukamoto R, Okazawa Y, Mizukoshi K, Sugimoto K et al (2020) Creatine kinase elevation after robotic surgery for rectal cancer due to a prolonged lithotomy position. BMC Surg 20:136. https://doi.org/10.1186/s12893-020-00771-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahutoglu C, Yasar A, Kocabas S, Askar FZ, Ayik MF, Atay Y (2018) Correlation between serum lactate levels and outcome in pediatric patients undergoing congenital heart surgery. Turk Gogus Kalp Damar Cerrahisi Derg 26:375–385. https://doi.org/10.5606/tgkdc.dergisi.2018.15791

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kumar L, Kumar K, Sandhya S, Koshy DM, Ramamurthi KP, Rajan S (2020) Effect of liberal versus restrictive fluid therapy on intraoperative lactate levels in robot- assisted colorectal surgery. Indian J Anaesth 64:599–604. https://doi.org/10.4103/ija.IJA_401_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soltanizadeh S, Jensen KK, Nordklint AK, Jorgensen HL, Jorgensen LN (2023) Even minor alteration of plasma creatinine after open abdominal surgery is associated with 30-day mortality: A single-centre cohort study. J Visc Surg 160:19–26. https://doi.org/10.1016/j.jviscsurg.2021.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Windisch OL, Matter M, Pascual M, Sun P, Benamran D, Buhler L et al (2022) Robotic versus hand-assisted laparoscopic living donor nephrectomy: comparison of two minimally invasive techniques in kidney transplantation. J Robot Surg 16:1471–1481. https://doi.org/10.1007/s11701-022-01393-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Minami E, Ito S, Sugiura T, Fujita Y, Sasano H, Sobue K (2014) Markedly elevated procalcitonin in early postoperative period in pediatric open heart surgery: a prospective cohort study. J Intensive Care 2:38. https://doi.org/10.1186/2052-0492-2-38

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cave J, Clarke S (2018) Paediatric robotic surgery. Ann R Coll Surg Engl 100:18–21. https://doi.org/10.1308/rcsann.supp2.18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Djordjevic A, Kotnik P, Horvat D, Knez Z, Antonic M (2020) Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomed Pharmacother 132:110877. https://doi.org/10.1016/j.biopha.2020.110877

    Article  CAS  PubMed  Google Scholar 

  50. Kozlik J, Przybylowska J, Mikrut K, Zukiewicz-Sobczak WA, Zwolinski J, Piatek J et al (2015) Selected oxidative stress markers in gynecological laparoscopy. Wideochir Inne Tech Maloinwazyjne 10:92–100. https://doi.org/10.5114/wiitm.2014.47449

    Article  PubMed  Google Scholar 

  51. Koźlik J, Przybyłowska J, Mikrut K, Żukiewicz-Sobczak WA, Zwoliński J, Piątek J et al (2015) Selected oxidative stress markers in gynecological laparoscopy. Videosurg Other Miniinvasive Tech 1:92–100. https://doi.org/10.5114/wiitm.2014.47449

    Article  Google Scholar 

  52. Burton D, Nicholson G, Hall G (2004) Endocrine and metabolic response to surgery. Cont Educ Anaesth Crit Care Pain 4:144–147. https://doi.org/10.1093/bjaceaccp/mkh040

    Article  Google Scholar 

  53. Dronkers J, Witteman B, van Meeteren N (2016) Surgery and functional mobility: doing the right thing at the right time. Tech Coloproctol 20:339–341. https://doi.org/10.1007/s10151-016-1487-6

    Article  CAS  PubMed  Google Scholar 

  54. Narra GR, Aparna SM, Miraz M, Santhosh S (2015) Comparison of surgical stress response under general anaesthesia in open laparotomy vs. laparoscopic abdominal surgeries. J Evol Med Dental Sci. 4:15125–15133. https://doi.org/10.14260/jemds/2015/2148

    Article  CAS  Google Scholar 

  55. Azemati S, Savai M, Khosravi MB, Allahyari E, Jahanmiri F (2013) Combination of remifentanil with isoflurane or propofol: effect on the surgical stress response. Acta Anaesthesiol Belg 64:25–31

    CAS  PubMed  Google Scholar 

  56. Hernández-Avalos I, Flores-Gasca E, Mota-Rojas D, Casas-Alvarado A, Miranda-Cortés AE, Domínguez-Oliva A (2021) Neurobiology of anesthetic-surgical stress and induced behavioral changes in dogs and cats: a review. Veterinary World 14:393–404. https://doi.org/10.14202/vetworld.2021.393-404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J (2019) The role of interleukin-1 in general pathology. Inflamm Regen 39:12. https://doi.org/10.1186/s41232-019-0101-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F et al (2022) COVID-19 infection: an overview on cytokine storm and related interventions. Virol J 19:92. https://doi.org/10.1186/s12985-022-01814-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson HL, Stryjewska B, Boyanton BL, Schwartz MR (1981) Review of the literature. Acta Anaesthesiol Scand 25:8–16. https://doi.org/10.1111/j.1399-6576.1981.tb01707.x

    Article  Google Scholar 

  60. Funahashi H, Mizuno S (1985) Pituitary-adrenocortical response to surgical stress in male patients. Nihon Geka Gakkai Zasshi. 86:240–250

    CAS  PubMed  Google Scholar 

  61. Hirokawa K, Miwa M, Taniguchi T, Tsuchiya M, Kawakami N (2016) Moderating effects of salivary testosterone levels on associations between job demand and psychological stress response in Japanese medical workers. Ind Health 54:194–203. https://doi.org/10.2486/indhealth.2015-0113

    Article  PubMed  Google Scholar 

  62. Pucheril D, Fletcher SA, Chen X, Friedlander DF, Cole AP, Krimphove MJ et al (2021) Workplace absenteeism amongst patients undergoing open vs. robotic radical prostatectomy, hysterectomy, and partial colectomy. Surg Endosc 35:1644–1650. https://doi.org/10.1007/s00464-020-07547-y

    Article  PubMed  Google Scholar 

  63. Vlot J (2019) Invited brief commentary on IUVS -2017-0216. J Invest Surg 32:61–62. https://doi.org/10.1080/08941939.2017.1383537

    Article  PubMed  Google Scholar 

  64. Todd LA, Vigersky RA (2021) Evaluating perioperative glycemic control of non-cardiac surgical patients with diabetes. Mil Med 186:e867–e872. https://doi.org/10.1093/milmed/usaa467

    Article  PubMed  Google Scholar 

  65. Pick A, Baralli JD, Sandhu H, Khorzad R (2020) 2231-PUB: perioperative glucose control protocol: hip and knee arthroplasty. Diabetes. https://doi.org/10.2337/db20-2231-PUB

    Article  Google Scholar 

  66. Behrenbruch C, Shembrey C, Paquet-Fifield S, Molck C, Cho HJ, Michael M et al (2018) Surgical stress response and promotion of metastasis in colorectal cancer: a complex and heterogeneous process. Clin Exp Metastasis 35:333–345. https://doi.org/10.1007/s10585-018-9873-2

    Article  PubMed  Google Scholar 

  67. Rossano F (2019) Complications of robotic surgery in oncological gynecology: the experience of the Brazilian National Institute of Cancer. J Gynecol Res Obstetr. https://doi.org/10.17352/jgro.000065

    Article  Google Scholar 

  68. Sies H (2020) Oxidative stress: concept and some practical aspects. Antioxidants (Basel). https://doi.org/10.3390/antiox9090852

    Article  PubMed  Google Scholar 

  69. Ou W, Liang Y, Qin Y, Wu W, Xie M, Zhang Y et al (2021) Hypoxic acclimation improves cardiac redox homeostasis and protects heart against ischemia-reperfusion injury through upregulation of O-GlcNAcylation. Redox Biol 43:101994. https://doi.org/10.1016/j.redox.2021.101994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sugita J, Fujiu K (2018) Systemic inflammatory stress response during cardiac surgery. Int Heart J 59:457–459. https://doi.org/10.1536/ihj.18-210

    Article  PubMed  Google Scholar 

  71. Rutkowski R, Pancewicz SA, Rutkowski K, Rutkowska J (2007) Reactive oxygen and nitrogen species in inflammatory process. Pol Merkur Lekarski 23:131–136

    CAS  PubMed  Google Scholar 

  72. Sodha S, Nazarian S, Adshead JM, Vasdev N, Mohan SG (2016) Effect of pneumoperitoneum on renal function and physiology in patients undergoing robotic renal surgery. Curr Urol 9:1–4. https://doi.org/10.1159/000442842

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gielen CE, Pignez Y, Swaelens C (2023) Two cases of vascular complications after urologic robotic surgery. Acta Chir Belg 123:333–336. https://doi.org/10.1080/00015458.2021.2021357

    Article  PubMed  Google Scholar 

  74. Gokmen Karasu AF, Kiran G, Sanlikan F (2022) Intraoperative complications and conversion to laparatomy in gynecologic robotic surgery. J Invest Surg 35:912–915. https://doi.org/10.1080/08941939.2021.1949411

    Article  PubMed  Google Scholar 

  75. Bastopcu M, Senay S, Gullu AU, Kocyigit M, Alhan C (2022) Percutaneous cannulation for cardiopulmonary bypass in robotic mitral valve surgery with zero groin complications. J Card Surg 37:280–284. https://doi.org/10.1111/jocs.16090

    Article  PubMed  Google Scholar 

  76. Pechan I, Danova K, Olejarova I, Halcak L, Rendekova V, Fabian J (2003) Oxidative stress and antioxidant defense systems in patients after heart transplantation. Wien Klin Wochenschr 115:648–651. https://doi.org/10.1007/BF03040470

    Article  CAS  PubMed  Google Scholar 

  77. Tokusoglu O (2019) Robotic approaches help maintain higher levels of key antioxidants like glutathione, superoxide dismutase, and catalase compared to open procedures. Food Health Technol Innov. 2:193–196

    Google Scholar 

  78. Hubner M, Mantziari S, Demartines N, Pralong F, Coti-Bertrand P, Schafer M (2016) Postoperative albumin drop is a marker for surgical stress and a predictor for clinical outcome: a pilot study. Gastroenterol Res Pract 2016:8743187. https://doi.org/10.1155/2016/8743187

    Article  PubMed  PubMed Central  Google Scholar 

  79. Breuer JP, Heymann CV, Spies C (2009) Perioperative Ernährung—metabolische Konditionierung. Aktuelle Ernährungsmedizin 34:107–113. https://doi.org/10.1055/s-0028-1090143

    Article  Google Scholar 

  80. Mila-Kierzenkowska C, Wozniak A, Drewa T, Wozniak B, Szpinda M, Krzyzynska-Malinowska E et al (2013) Effects of open versus laparoscopic nephrectomy techniques on oxidative stress markers in patients with renal cell carcinoma. Oxid Med Cell Longev 2013:438321. https://doi.org/10.1155/2013/438321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arsalani-Zadeh R, Ullah S, Khan S, MacFie J (2011) Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res 169:e59-68. https://doi.org/10.1016/j.jss.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  82. Jaradeh M, Curran B, Poulikidis K, Rodrigues A, Jeske W, Abdelsattar ZM et al (2022) Inflammatory cytokines in robot-assisted thoracic surgery versus video-assisted thoracic surgery. J Thorac Dis 14:2000–2010. https://doi.org/10.21037/jtd-21-1820

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pilka R, Marek R, Adam T, Kudela M, Ondrova D, Neubert D et al (2016) Systemic inflammatory response after open, laparoscopic and robotic surgery in endometrial cancer patients. Anticancer Res 36:2909–2922

    CAS  PubMed  Google Scholar 

  84. LeBlanc K, M. Sweitzer S, (2015) Systematic review of clinical evidence for local anesthetic wound infiltration in reduction of post-surgical pain. Internal Med Open Access. https://doi.org/10.4172/2165-8048.1000207

    Article  Google Scholar 

  85. Martinschek A, Stumm L, Ritter M, Heinrich E, Bolenz C, Trojan L (2017) Prospective, controlled study of invasiveness and post-aggression metabolism in patients undergoing robotic-assisted radical prostatectomy. Urol Int 99:201–206. https://doi.org/10.1159/000478027

    Article  CAS  PubMed  Google Scholar 

  86. Pathak S, Goel N, Chowdhury I, Bhageria V (2016) Anaesthetic management of a patient with glucose-6-phosphate dehydrogenase deficiency undergoing robotic-assisted laparoscopic radical prostatectomy. J Soc Anesthesiol Nepal 3:93–95. https://doi.org/10.3126/jsan.v3i2.15621

    Article  Google Scholar 

  87. Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X et al (2021) Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 18:123. https://doi.org/10.1186/s12974-021-02137-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bailey EH, Glasgow SC (2015) Challenges in the medical and surgical management of chronic inflammatory bowel disease. Surg Clin North Am 95(1233–44):vii. https://doi.org/10.1016/j.suc.2015.08.003

    Article  PubMed  Google Scholar 

  89. Cohen BD, Marshall MB (2020) Robotic-assisted tracheobronchial surgery. J Thorac Dis 12:6173–6178. https://doi.org/10.21037/jtd.2020.03.05

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pelizzo G, Nakib G, Romano P, Avolio L, Mencherini S, Zambaiti E et al (2015) Five millimetre-instruments in paediatric robotic surgery: advantages and shortcomings. Minim Invasive Ther Allied Technol 24:148–153. https://doi.org/10.3109/13645706.2014.975135

    Article  PubMed  Google Scholar 

  91. Máca J, Peteja M (2007) Alarmins and surgical injury. Rozhl Chir 96:105–113

    Google Scholar 

  92. Spotnitz WD (2012) Getting to hemostasis: general and thoracic surgical challenges. Tex Heart Inst J 39:868–870

    PubMed  PubMed Central  Google Scholar 

  93. Muller R, Musikic P (1987) Hemorheology in surgery–a review. Angiology 38:581–592. https://doi.org/10.1177/000331978703800802

    Article  CAS  PubMed  Google Scholar 

  94. Wareing A (2017) Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Int J Nurs Pract. https://doi.org/10.1111/ijn.12552

    Article  PubMed  Google Scholar 

  95. Puca AA, Carrizzo A, Ferrario A, Villa F, Vecchione C (2012) Endothelial nitric oxide synthase, vascular integrity and human exceptional longevity. Immun Ageing 9:26. https://doi.org/10.1186/1742-4933-9-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pessoa RR, Maroni P, Kukreja J, Kim SP (2021) Comparative effectiveness of robotic and open radical prostatectomy. Transl Androl Urol 10:2158–2170. https://doi.org/10.21037/tau.2019.12.01

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wikiel KJ, Robinson TN, Jones EL (2021) Energy in robotic surgery. Ann Laparosc Endosc Surg. 6:9. https://doi.org/10.21037/ales.2020.03.06

    Article  Google Scholar 

  98. Shakir N, Wong D, Cadeddu J, Roehrborn C (2019) Pd40–12 impact of single dose perioperative enoxaparin on rate of thromboembolic events following robotic assisted prostatectomy: a hospital system-wide analysis. J Urol. https://doi.org/10.1097/01.Ju.0000556544.63234.67

    Article  PubMed  PubMed Central  Google Scholar 

  99. Waigankar SS, Yuvaraja TB, Dev P, Agarwal V, Pednekar AP, Kulkarni B (2021) Robotic Freyer’s prostatectomy: operative technique and single-center experience. Indian J Urol 37:247–253. https://doi.org/10.4103/iju.IJU_78_21

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pogatzki-Zahn E (2010) Prevention and therapy of prolonged, chronic pain after surgery. Anasth Intensivmed Notfallmed Schmerzther 45:496–503. https://doi.org/10.1055/s-0030-1262479. (Quiz 4)

    Article  Google Scholar 

  101. Meghana N, Bharadwaj M, Goel N, Shukla S (2022) Endotracheal tube cuff pressure changes with pneumoperitoneum and steep head down position in patients undergoing robotic urogynecological surgeries—a prospective observational study. J Indian College Anaesthesiol. https://doi.org/10.4103/jica.jica_15_22

    Article  Google Scholar 

  102. Faas CL, Acosta FJ, Campbell MD, O’Hagan CE, Newton SE, Zagalaniczny K (2002) The effects of spinal anesthesia vs epidural anesthesia on 3 potential postoperative complications: pain, urinary retention, and mobility following inguinal herniorrhaphy. AANA J 70:441–447

    PubMed  Google Scholar 

  103. Watrowski R, Kostov S, Alkatout I (2021) Complications in laparoscopic and robotic-assisted surgery: definitions, classifications, incidence and risk factors - an up-to-date review. Wideochir Inne Tech Maloinwazyjne 16:501–525. https://doi.org/10.5114/wiitm.2021.108800

    Article  PubMed  PubMed Central  Google Scholar 

  104. Saily VM, Petas A, Joutsi-Korhonen L, Taari K, Lassila R, Rannikko AS (2014) Dabigatran for thromboprophylaxis after robotic assisted laparoscopic prostatectomy: retrospective analysis of safety profile and effect on blood coagulation. Scand J Urol 48:153–159. https://doi.org/10.3109/21681805.2013.817482

    Article  CAS  PubMed  Google Scholar 

  105. Naghi I, Seader K, Hashemi E, Sommers G, Anderson PS (2016) The role of robotic surgery versus laparotomy on the incidence of thromboembolism in uterine cancer [21P]. Obstet Gynecol 127:136S-S137. https://doi.org/10.1097/01.AOG.0000483550.73369.fc

    Article  Google Scholar 

  106. Kapoor I, Rath G (2018) Robotized surgical assistant in neurosurgery: anaesthetic implications! J Neuroanaesthesiol Crit Care 03:151–152. https://doi.org/10.4103/2348-0548.182328

    Article  Google Scholar 

  107. Zemmar A, Lozano AM, Nelson BJ (2020) The rise of robots in surgical environments during COVID-19. Nat Mach Intell 2:566–572. https://doi.org/10.1038/s42256-020-00238-2

    Article  Google Scholar 

  108. Orsolya M, Daniela BS, Rodica R, Cipriana C, Attila MZ, Loan C (2012) Renal function monitoring in urogenital robot-assisted laparoscopic surgery performed in general anaesthesia. Med Con 23:13–18. https://doi.org/10.33311/medcon.2012.23.3.3

  109. Martini A, Sfakianos JP, Paulucci DJ, Abaza R, Eun DD, Bhandari A et al (2019) Predicting acute kidney injury after robot-assisted partial nephrectomy: implications for patient selection and postoperative management. Urol Oncol 37:445–451. https://doi.org/10.1016/j.urolonc.2019.04.018

    Article  PubMed  Google Scholar 

  110. Bogdanov RR, Nurimanshin AF, Husaenova AA, Khasanov AR (2023) Anesthetic aspects of robot-assisted surgery (a review). Pacific Medical Journal. https://doi.org/10.34215/1609-1175-2023-1-11-18

    Article  Google Scholar 

  111. Di Benedetto F, Petrowsky H, Magistri P, Halazun KJ (2020) Robotic liver resection: hurdles and beyond. Int J Surg 82S:155–162. https://doi.org/10.1016/j.ijsu.2020.05.070

    Article  PubMed  Google Scholar 

  112. Mori C, Iwasaki H, Sato I, Takahoko K, Inaba Y, Kawasaki Y et al (2023) Impact of intraoperative fluid restriction on renal outcomes in patients undergoing robotic-assisted laparoscopic prostatectomy. J Robot Surg. https://doi.org/10.1007/s11701-023-01610-1

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nomine-Criqui C, Demarquet L, Schweitzer ML, Klein M, Brunaud L, Bihain F (2020) Robotic adrenalectomy: when and how? Gland Surg 9:S166–S172. https://doi.org/10.21037/gs.2019.12.11

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ortenzi M, Ghiselli R, Baldarelli M, Cardinali L, Guerrieri M (2018) Is the bipolar vessel sealer device an effective tool in robotic surgery? A retrospective analysis of our experience and a meta-analysis of the literature about different robotic procedures by investigating operative data and post-operative course. Minim Invasive Ther Allied Technol 27:113–118. https://doi.org/10.1080/13645706.2017.1329212

    Article  PubMed  Google Scholar 

  115. Muaddi H, Hafid ME, Choi WJ, Lillie E, de Mestral C, Nathens A et al (2021) Clinical outcomes of robotic surgery compared to conventional surgical approaches (laparoscopic or open): a systematic overview of reviews. Ann Surg 273:467–473. https://doi.org/10.1097/SLA.0000000000003915

    Article  PubMed  Google Scholar 

  116. Lindfors A, Akesson A, Staf C, Sjoli P, Sundfeldt K, Dahm-Kahler P (2018) Robotic vs open surgery for endometrial cancer in elderly patients: surgical outcome, survival, and cost analysis. Int J Gynecol Cancer 28:692–699. https://doi.org/10.1097/IGC.0000000000001240

    Article  PubMed  Google Scholar 

  117. Yamamoto S (2020) Comparison of the perioperative outcomes of laparoscopic surgery, robotic surgery, open surgery, and transanal total mesorectal excision for rectal cancer: an overview of systematic reviews. Ann Gastroenterol Surg 4:628–634. https://doi.org/10.1002/ags3.12385

    Article  PubMed  PubMed Central  Google Scholar 

  118. Khan H, Dhillon K, Mahapatra P, Popat R, Zakieh O, Kim WJ et al (2021) Blood loss and transfusion risk in robotic-assisted knee arthroplasty: a retrospective analysis. Int J Med Robot 17:e2308. https://doi.org/10.1002/rcs.2308

    Article  PubMed  Google Scholar 

  119. Salciccia S, Rosati D, Viscuso P, Canale V, Scarrone E, Frisenda M et al (2021) Influence of operative time and blood loss on surgical margins and functional outcomes for laparoscopic versus robotic-assisted radical prostatectomy: a prospective analysis. Cent European J Urol 74:503–515. https://doi.org/10.5173/ceju.2021.0177

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hockstein NG, Weinstein GS, O’Malley BW Jr (2005) Maintenance of hemostasis in transoral robotic surgery. ORL J Otorhinolaryngol Relat Spec 67:220–4. https://doi.org/10.1159/000088012

    Article  PubMed  Google Scholar 

  121. Becker F, Morgul H, Katou S, Juratli M, Holzen JP, Pascher A et al (2021) Robotic liver surgery—current standards and future perspectives. Z Gastroenterol 59:56–62. https://doi.org/10.1055/a-1329-3067

    Article  PubMed  Google Scholar 

  122. Ziegler S, Ortu A, Reale C, Proietti R, Mondello E, Tufano R et al (2008) Fibrinolysis or hypercoagulation during radical prostatectomy? An evaluation of thrombelastographic parameters and standard laboratory tests. Eur J Anaesthesiol 25:538–543. https://doi.org/10.1017/S0265021508003852

    Article  CAS  PubMed  Google Scholar 

  123. Ye L, Childers CP, de Virgilio M, Shenoy R, Mederos MA, Mak SS et al (2021) Clinical outcomes and cost of robotic ventral hernia repair: systematic review. BJS Open. https://doi.org/10.1093/bjsopen/zrab098

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fontalis A, Kayani B, Asokan A, Haddad IC, Tahmassebi J, Konan S et al (2022) Inflammatory response in robotic-arm-assisted versus conventional jig-based TKA and the correlation with early functional outcomes: results of a prospective randomized controlled trial. J Bone Joint Surg Am 104:1905–1914. https://doi.org/10.2106/JBJS.22.00167

    Article  PubMed  Google Scholar 

  125. Kayani B, Tahmassebi J, Ayuob A, Konan S, Oussedik S, Haddad FS (2021) A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jig-based total knee arthroplasty versus robotic-arm assisted total knee arthroplasty. Bone Joint J 103-B:113–22. https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0602.R2

    Article  PubMed  Google Scholar 

  126. Colon KC, Seligsohn D, Salame G (2021) Transversus abdominis plane block in robotic gynecologic oncology surgery. Austin J Anesth Analg. https://doi.org/10.26420/austinjanesthesiaandanalgesia.2021.1097

    Article  Google Scholar 

  127. Webster TM, Herrell SD, Chang SS, Cookson MS, Baumgartner RG, Anderson LW et al (2005) Robotic assisted laparoscopic radical prostatectomy versus retropubic radical prostatectomy: a prospective assessment of postoperative pain. J Urol 174:912–4. https://doi.org/10.1097/01.ju.0000169455.25510.ff

    Article  PubMed  Google Scholar 

  128. Akdemir A, Yildirim N, Zeybek B, Karaman S, Sendag F (2015) Single incision trans-umbilical total hysterectomy: robotic or laparoscopic? Gynecol Obstet Invest 80:93–98. https://doi.org/10.1159/000370000

    Article  CAS  PubMed  Google Scholar 

  129. Tan YG, Allen JC, Tay KJ, Huang HH, Lee LS (2020) Benefits of robotic cystectomy compared with open cystectomy in an enhanced recovery after surgery program: a propensity-matched analysis. Int J Urol 27:783–788. https://doi.org/10.1111/iju.14300

    Article  CAS  PubMed  Google Scholar 

  130. Gul ZG, Katims AB, Winoker JS, Wiklund P, Waingankar N, Mehrazin R (2021) Robotic assisted radical cystectomy versus open radical cystectomy: a review of what we do and don’t know. Transl Androl Urol 10:2209–2215. https://doi.org/10.21037/tau.2019.11.32

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhao H, Sun W (2022) Effect of enhanced recovery after surgery with integrated traditional chinese and western medicine on postoperative stress response of patients with gastrointestinal tumors. Comput Math Methods Med 2022:3663246. https://doi.org/10.1155/2022/3663246

    Article  PubMed  PubMed Central  Google Scholar 

  132. Maerz DA, Beck LN, Sim AJ, Gainsburg DM (2017) Complications of robotic-assisted laparoscopic surgery distant from the surgical site. Br J Anaesth 118:492–503. https://doi.org/10.1093/bja/aex003

    Article  CAS  PubMed  Google Scholar 

  133. Campos J, Ueda K (2014) Update on anesthetic complications of robotic thoracic surgery. Minerva Anestesiol 80:83–88

    CAS  PubMed  Google Scholar 

  134. El-Hakim A, Leung RA, Tewari A (2006) Robotic prostatectomy: a pooled analysis of published literature. Expert Rev Anticancer Ther 6:11–20. https://doi.org/10.1586/14737140.6.1.11

    Article  PubMed  Google Scholar 

  135. Zhang R, Li T, Ye L, Lin L, Wei Y (2022) The evidence behind robot-assisted abdominopelvic surgery. Ann Intern Med 175:W22. https://doi.org/10.7326/L21-0781

    Article  PubMed  Google Scholar 

  136. Oblak T (2021) The incidence of peripheral nerve injuries related to patient positioning during robotic assisted surgery: an evidence summary. J Perioper Nurs 34:49–53. https://doi.org/10.26550/2209-1092.1166

    Article  Google Scholar 

  137. El Rassi I, El Rassi JM (2020) A review of haptic feedback in tele-operated robotic surgery. J Med Eng Technol 44:247–254. https://doi.org/10.1080/03091902.2020.1772391

    Article  PubMed  Google Scholar 

  138. Fotiou A, Iavazzo C (2022) Gynecologic robotic surgery: intraoperative complication and conversion rates. J Invest Surg 35:916–917. https://doi.org/10.1080/08941939.2021.1962440

    Article  PubMed  Google Scholar 

  139. Ackerman SJ, Daniel S, Baik R, Liu E, Mehendale S, Tackett S et al (2018) Comparison of complication and conversion rates between robotic-assisted and laparoscopic rectal resection for rectal cancer: which patients and providers could benefit most from robotic-assisted surgery? J Med Econ 21:254–261. https://doi.org/10.1080/13696998.2017.1396994

    Article  PubMed  Google Scholar 

  140. Gibber M, Lehr EJ, Kon ZN, Wehman PB, Griffith BP, Bonatti J (2014) Is there a role for robotic totally endoscopic coronary artery bypass in patients with a colostomy? Innovations (Phila) 9:448–450. https://doi.org/10.1177/155698451400900610

    Article  PubMed  Google Scholar 

  141. De la Harb Rosa A, Garcia-Castaneda J, Hsu CH, Zeng J, Batai K, Lee BR et al (2020) Perioperative outcomes of open vs. robotic radical cystectomy: a nationwide comparative analysis (2009-2014). Cent European J Urol. 73:427–31. https://doi.org/10.5173/ceju.2020.0230

    Article  Google Scholar 

  142. Schlager JG, Hartmann D, Wallmichrath J, RuizSanJose V, Patzer K, French LE et al (2022) Patient-dependent risk factors for wound infection after skin surgery: a systematic review and meta-analysis. Int Wound J 19:1748–1757. https://doi.org/10.1111/iwj.13780

    Article  PubMed  PubMed Central  Google Scholar 

  143. Simhal RK, Wang KR, Shah Y, Simon DP, Mark JR, Shah MS et al (2023) Risk analysis of open vs. robotic assisted radical cystectomy. J Clin Oncol 41:576. https://doi.org/10.1200/JCO.2023.41.6_suppl.576

    Article  Google Scholar 

  144. Wang J, Johnson NW, Casey L, Carne PWG, Bell S, Chin M et al (2023) Robotic colon surgery in obese patients: a systematic review and meta-analysis. ANZ J Surg 93:35–41. https://doi.org/10.1111/ans.17749

    Article  PubMed  Google Scholar 

  145. Zarak A, Castillo A, Kichler K, de la Cruz L, Tamariz L, Kaza S (2015) Robotic versus laparoscopic surgery for colonic disease: a meta-analysis of postoperative variables. Surg Endosc 29:1341–1347. https://doi.org/10.1007/s00464-015-4197-7

    Article  PubMed  Google Scholar 

  146. Karategos A, Yassin N (2022) P557 Robotic surgery significantly improves outcomes for patients with inflammatory bowel disease. J Crohns Colitis 16:i502-i. https://doi.org/10.1093/ecco-jcc/jjab232.683

    Article  Google Scholar 

  147. Ravendran K, Abiola E, Balagumar K, Raja AZ, Flaih M, Vaja SP et al (2023) A review of robotic surgery in colorectal surgery. Cureus 15:e37337. https://doi.org/10.7759/cureus.37337

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ito H, Moritake T, Isaka K (2022) Does the use of a uterine manipulator in robotic surgery for early-stage endometrial cancer affect oncological outcomes? Int J Med Robot 18:e2443. https://doi.org/10.1002/rcs.2443

    Article  PubMed  Google Scholar 

  149. Hori S, Nakai Y, Tomizawa M, Morizawa Y, Gotoh D, Miyake M et al (2022) Trends in primary treatment for localized prostate cancer according to the availability of treatment modalities and the impact of introducing robotic surgery. Int J Urol 29:1371–9. https://doi.org/10.1111/iju.15003

    Article  PubMed  Google Scholar 

  150. Gagnon LO, Goldenberg SL, Lynch K, Hurtado A, Gleave ME (2014) Comparison of open and robotic-assisted prostatectomy: the University of British Columbia experience. Can Urol Assoc J 8:92–7. https://doi.org/10.5489/cuaj.1707

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jimenez-Rodriguez RM, Flynn J, Patil S, Widmar M, Quezada-Diaz F, Lynn P et al (2021) Comparing outcomes of robotic versus open mesorectal excision for rectal cancer. BJS Open. https://doi.org/10.1093/bjsopen/zrab135

    Article  PubMed  Google Scholar 

  152. (2022) Scientific Impact Paper No. 71: Robotic surgery in gynaecology. The Obstetr Gynaecol. 24:298. https://doi.org/10.1111/tog.12842

  153. Ornellas AA (2013) Phase 1 prospective evaluation of the oncological adequacy of robotic assisted video-endoscopic inguinal lymphadenectomy in patients with penile carcinoma. BJU Int 111:1010. https://doi.org/10.1111/j.1464-410X.2013.11733.x

    Article  Google Scholar 

  154. Casarin J, Multinu F, Tortorella L, Cappuccio S, Weaver AL, Ghezzi F et al (2020) Sentinel lymph node biopsy for robotic-assisted endometrial cancer staging: further improvement of perioperative outcomes. Int J Gynecol Cancer 30:41–7. https://doi.org/10.1136/ijgc-2019-000672

    Article  PubMed  Google Scholar 

  155. Asanoma K, Yahata H, Okugawa K, Ohgami T, Yasunaga M, Kodama K et al (2022) Impact of obesity on robotic-assisted surgery in patients with stage IA endometrial cancer and a low risk of recurrence: an institutional study. J Obstet Gynaecol Res 48:3226–32. https://doi.org/10.1111/jog.15434

    Article  CAS  PubMed  Google Scholar 

  156. Martinez-Perez A, Carra MC, Brunetti F, de Angelis N (2017) Pathologic outcomes of laparoscopic vs open mesorectal excision for rectal cancer: a systematic review and meta-analysis. JAMA Surg 152:165665. https://doi.org/10.1001/jamasurg.2016.5665

    Article  Google Scholar 

  157. Attaluri V, McLemore EC (2016) The cost of robotic surgery. Semin Colon Rectal Surg 27:134–5. https://doi.org/10.1053/j.scrs.2016.04.004

    Article  Google Scholar 

  158. Oshimori N, Guo Y, Taniguchi S (2021) An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol 254:384–94. https://doi.org/10.1002/path.5655

    Article  PubMed  PubMed Central  Google Scholar 

  159. Brzozowa M, Michalski M, Wyrobiec G, Piecuch A, Dittfeld A, Harabin-Slowinska M et al (2015) The role of Snail1 transcription factor in colorectal cancer progression and metastasis. Contemp Oncol (Pozn) 19:265–70. https://doi.org/10.5114/wo.2014.42173

    Article  CAS  PubMed  Google Scholar 

  160. Baldini E, Tuccilli C, Pironi D, Catania A, Tartaglia F, Di Matteo FM et al (2021) Expression and clinical utility of transcription factors involved in epithelial-mesenchymal transition during thyroid cancer progression. J Clin Med. https://doi.org/10.3390/jcm10184076

    Article  PubMed  PubMed Central  Google Scholar 

  161. Niland S, Riscanevo AX, Eble JA (2021) Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. https://doi.org/10.3390/ijms23010146

    Article  PubMed  PubMed Central  Google Scholar 

  162. Umamaheswari A, Katari S, Pasala C, Nalamolu R, Vankadoth U, Alexander S et al (2019) Pathophysiology of matrix metalloproteinases in breast cancer progression. J Clin Sci Res. https://doi.org/10.4103/jcsr.Jcsr_67_19

    Article  Google Scholar 

  163. Sidorkiewicz I, Piskor B, Dabrowska E, Guzinska-Ustymowicz K, Pryczynicz A, Zbucka-Kretowska M et al (2019) Plasma levels and tissue expression of selected cytokines, metalloproteinases and tissue inhibitors in patients with cervical cancer. Anticancer Res 39:6403–12. https://doi.org/10.21873/anticanres.13854

    Article  CAS  PubMed  Google Scholar 

  164. Jin B, Zhang YY, Pan JX (2023) The role and significance of hepatic environmental cells in tumor metastatic colonization to liver. Sichuan Da Xue Xue Bao Yi Xue Ban 54:469–74. https://doi.org/10.12182/20230560301

    Article  PubMed  Google Scholar 

  165. Dahn ML, Marcato P (2020) Targeting the roots of recurrence: new strategies for eliminating therapy-resistant breast cancer stem cells. Cancers (Basel). https://doi.org/10.3390/cancers13010054

    Article  PubMed  Google Scholar 

  166. Colak S, Medema JP (2014) Cancer stem cells–important players in tumor therapy resistance. FEBS J 281:4779–91. https://doi.org/10.1111/febs.13023

    Article  CAS  PubMed  Google Scholar 

  167. Savelieva OE, Tashireva LA, Kaigorodova EV, Buzenkova AV, Mukhamedzhanov RK, Grigoryeva ES et al (2020) Heterogeneity of stemlike circulating tumor cells in invasive breast cancer. Int J Mol Sci. https://doi.org/10.3390/ijms21082780

    Article  PubMed  PubMed Central  Google Scholar 

  168. Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS (2016) Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand 60(3):289–334. https://doi.org/10.1111/aas.12651

  169. Tang F, Tie Y, Lan TX, Yang JY, Hong WQ, Chen SY et al (2023) Surgical treatment of osteosarcoma induced distant pre-metastatic niche in lung to facilitate the colonization of circulating tumor cells. Adv Sci (Weinh). https://doi.org/10.1002/advs.202207518

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–70. https://doi.org/10.1126/science.1203486

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Del Vecchio F, Martinez-Rodriguez V, Schukking M, Cocks A, Broseghini E, Fabbri M (2021) Professional killers: the role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J Extracell Vesicles 10:e12075. https://doi.org/10.1002/jev2.12075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234:8509–21. https://doi.org/10.1002/jcp.27782

    Article  CAS  PubMed  Google Scholar 

  173. Khan S, Jain M, Mathur V, Feroz SM (2016) Chronic inflammation and cancer: paradigm on tumor progression, metastasis and therapeutic intervention. Gulf J Oncolog 1:86–93

    CAS  PubMed  Google Scholar 

  174. Do HTT, Lee CH, Cho J (2020) Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel). https://doi.org/10.3390/cancers12020287

    Article  PubMed  Google Scholar 

  175. Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD (2015) New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clin Cancer Res 21:5191–7. https://doi.org/10.1158/1078-0432.CCR-15-0860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pu Y, Ji Q (2022) Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. https://doi.org/10.3389/fimmu.2022.874589

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kaptein P, Jacoberger-Foissac C, Dimitriadis P, Voabil P, de Bruijn M, Brokamp S et al (2022) Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med 14:eabj9779. https://doi.org/10.1126/scitranslmed.abj9779

    Article  CAS  PubMed  Google Scholar 

  178. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–84. https://doi.org/10.1101/gad.314617.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Berraondo P, Minute L, Ajona D, Corrales L, Melero I, Pio R (2016) Innate immune mediators in cancer: between defense and resistance. Immunol Rev 274:290–306. https://doi.org/10.1111/imr.12464

    Article  CAS  PubMed  Google Scholar 

  180. Wang CS, Kozlow JR, Troost JP, Corcoran JF (2022) Reliability of a case-based oral examination by case and competency for evaluation of plastic surgery residents. Plastic Reconstr Surg Global Open. 10:8–9. https://doi.org/10.1097/01.Gox.0000834952.14979.78

    Article  Google Scholar 

  181. Holoman M, Zahorec R, Kusy J, Pechan I (1995) Biochemical monitoring in patients during revascularization surgery. Vasa 24:23–8

    CAS  PubMed  Google Scholar 

  182. Pechan I, Halcak L, Rendekova V, Barta E, Cornak V, Zahorec R et al (1993) Biochemical parameters in the blood of patients during open-heart surgery. I. Monitoring changes in energy metabolism. Bratisl Lek Listy 94:349–53

    CAS  PubMed  Google Scholar 

  183. Rijs Z, Shifai AN, Bosma SE, Kuppen PJK, Vahrmeijer AL, Keereweer S et al (2021) Candidate biomarkers for specific intraoperative near-infrared imaging of soft tissue sarcomas: a systematic review. Cancers (Basel). https://doi.org/10.3390/cancers13030557

    Article  PubMed  Google Scholar 

  184. Jiang P (2018) Abstract B24: digital signatures of T cell dysfunction predict immunotherapy response. Cancer Immunol Res 6:B24. https://doi.org/10.1158/2326-6074.Tumimm17-b24

    Article  Google Scholar 

  185. Algadi HH, Abou-Bakr AA, Jamali OM, Fathy LM (2020) Toluidine blue versus frozen section for assessment of mucosal tumor margins in oral squamous cell carcinoma. BMC Cancer 20:1147. https://doi.org/10.1186/s12885-020-07644-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schaefer JM, Barth CW, Davis SC, Gibbs SL (2019) Diagnostic performance of receptor-specific surgical specimen staining correlates with receptor expression level. J Biomed Opt 24:1–9. https://doi.org/10.1117/1.JBO.24.2.026002

    Article  PubMed  Google Scholar 

  187. Marochkov AV (2012) Control of laboratory parameters level as a component of anesthesia monitoring in patients undergoing abdominal surgery. Health and Ecology Issues. https://doi.org/10.51523/2708-6011.2012-9-3-18

    Article  Google Scholar 

  188. Bay E, Dean-Ben XL, Pang GA, Douplik A, Razansky D (2015) Real-time monitoring of incision profile during laser surgery using shock wave detection. J Biophotonics 8:102–11. https://doi.org/10.1002/jbio.201300151

    Article  PubMed  Google Scholar 

  189. Ding J (2006) Realtime control algorithm for teleoperated surgery robot. Chin J Mech Eng. https://doi.org/10.3901/jme.2006.12.163

    Article  Google Scholar 

  190. Andrew BY, Andrew EY, Cherry AD, Hauck JN, Nicoara A, Pieper CF et al (2018) Intraoperative renal resistive index as an acute kidney injury biomarker: development and validation of an automated analysis algorithm. J Cardiothorac Vasc Anesth 32:2203–9. https://doi.org/10.1053/j.jvca.2018.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  191. Matsubara TJ, Fujiu K, Shimizu Y, Oshima T, Matsuda J, Matsunaga H et al (2020) Fluoroless and contrast-free catheter ablation without a lead apron in routine clinical practice. Sci Rep 10:17096. https://doi.org/10.1038/s41598-020-74165-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Connolly P (2004) The potential for biosensors in cardiac surgery. Perfusion 19:247–9. https://doi.org/10.1191/0267659104pf747oa

    Article  PubMed  Google Scholar 

  193. Ding D, Li J, Bai D, Fang H, Lin J, Zhang D (2020) Biosensor-based monitoring of the central metabolic pathway metabolites. Biosens Bioelectron 167:112456. https://doi.org/10.1016/j.bios.2020.112456

    Article  CAS  PubMed  Google Scholar 

  194. Perdomo SA, Marmolejo-Tejada JM, Jaramillo-Botero A (2021) Review—bio-nanosensors: fundamentals and recent applications. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac2972

    Article  Google Scholar 

  195. Smith BR, Cheng Z, De A, Rosenberg J, Gambhir SS (2010) Dynamic visualization of RGD-quantum dot binding to tumor neovasculature and extravasation in multiple living mouse models using intravital microscopy. Small 6:2222–9. https://doi.org/10.1002/smll.201001022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liu X, Braun GB, Zhong H, Hall DJ, Han W, Qin M et al (2016) Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv Funct Mater 26:267–76. https://doi.org/10.1002/adfm.201503453

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Bergholt MS, Lin K, Wang J, Zheng W, Xu H, Huang Q et al (2016) Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J Biophotonics 9:333–42. https://doi.org/10.1002/jbio.201400141

    Article  CAS  PubMed  Google Scholar 

  198. Khan H, Shah MR, Barek J, Malik MI (2023) Cancer biomarkers and their biosensors: a comprehensive review. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2022.116813

    Article  Google Scholar 

  199. Ravalli A, Marrazza G (2015) Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J Nanosci Nanotechnol 15:3307–19. https://doi.org/10.1166/jnn.2015.10038

    Article  CAS  PubMed  Google Scholar 

  200. Lalvani SB (2019) Electrochemical biosensors for detection of cancer biomarkers. Int J Biosens Bioelectron. https://doi.org/10.15406/ijbsbe.2019.05.00170

    Article  Google Scholar 

  201. Asuvaran A, Elatharasan G (2021) Design of two-dimensional photonic crystal based biosensors for abnormal tissues analysis. Silicon 14(12):1–8. https://doi.org/10.21203/rs.3.rs-628354/v1

  202. Yin B, Wang X, Yuan F, Li Y, Lu P (2022) Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 13:899111. https://doi.org/10.3389/fmicb.2022.899111

    Article  PubMed  PubMed Central  Google Scholar 

  203. Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS et al (2020) Stimuli-responsive hydrogels for local post-surgical drug delivery. Gels. https://doi.org/10.3390/gels6020014

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hakim ML, Nahar N, Saha M, Islam MS, Reza HM, Sharker SM (2020) Local drug delivery from surgical thread for area-specific anesthesia. Biomed Phys Eng Express 6:015028. https://doi.org/10.1088/2057-1976/ab6a1e

    Article  PubMed  Google Scholar 

  205. Park CG, Hartl CA, Schmid D, Carmona EM, Kim HJ, Goldberg MS (2018) Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar1916

    Article  PubMed  PubMed Central  Google Scholar 

  206. Das KP (2022) Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: current progress and challenges. Front Med Technol. 4:1067144. https://doi.org/10.3389/fmedt.2022.1067144

    Article  PubMed  Google Scholar 

  207. Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V et al (2019) Advances in drug delivery for post-surgical cancer treatment. Biomaterials 219:119182. https://doi.org/10.1016/j.biomaterials.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  208. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26. https://doi.org/10.1016/j.jconrel.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  209. Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8:77–84. https://doi.org/10.1007/s10047-005-0285-0

    Article  CAS  PubMed  Google Scholar 

  210. Dupoiron D, Douillard T, Carvajal G (2020) Usefulness of imaging for intrathecal drug delivery systems: an update. Med Res Arch. https://doi.org/10.18103/mra.v8i7.2175

    Article  Google Scholar 

  211. Zerla PA, Canelli A, Cerne L, Caravella G, Gilardini A, De Luca G et al (2017) Evaluating safety, efficacy, and cost-effectiveness of PICC securement by subcutaneously anchored stabilization device. J Vasc Access 18:238–42. https://doi.org/10.5301/jva.5000655

    Article  PubMed  Google Scholar 

  212. Wang L, Wang H, Li HZ (2023) Real-time customized precision combination therapies based on potential actionability and coalterations to provide therapeutic opportunities for hyperprogressive disease after immune checkpoint inhibitor therapy. J Clin Oncol 41:14688. https://doi.org/10.1200/JCO.2023.41.16_suppl.e14688

    Article  Google Scholar 

  213. Park SH, Kim KY, Kim YM, Hyung WJ (2023) Patient-specific virtual three-dimensional surgical navigation for gastric cancer surgery: a prospective study for preoperative planning and intraoperative guidance. Front Oncol 13:1140175. https://doi.org/10.3389/fonc.2023.1140175

    Article  PubMed  PubMed Central  Google Scholar 

  214. Franklin WA, Carbone DP (2003) Molecular staging and pharmacogenomics. Clinical implications: from lab to patients and back. Lung Cancer 41(Suppl 1):147–54. https://doi.org/10.1016/s0169-5002(03)00158-2

    Article  Google Scholar 

  215. Fuji L, Louw D (2007) Surgical robotics for patient safety in the perioperative environment: realizing the promise. Surg Innov 14:77–82. https://doi.org/10.1177/1553350607303880

    Article  Google Scholar 

  216. Pilie PG, LoRusso PM, Yap TA (2017) Precision medicine: progress, pitfalls, and promises. Mol Cancer Ther 16:2641–4. https://doi.org/10.1158/1535-7163.MCT-17-0904

    Article  CAS  PubMed  Google Scholar 

  217. Mercogliano MF, Bruni S, Mauro FL, Schillaci R (2023) Emerging targeted therapies for HER2-positive breast cancer. Cancers (Basel). https://doi.org/10.3390/cancers15071987

    Article  PubMed  Google Scholar 

  218. Stukan AI, Goryainova AY, Riger NA, Sharov SV, Shatokhina AS, Chukhray OY et al (2021) Germinal <i>BRCA</i>-mutation significance in the tumor microenvironment formation Efficacy of PARP inhibition in late-line therapy of metastatic castration-resistant prostate cancer. Cancer Urol 17:85–94. https://doi.org/10.17650/1726-9776-2021-17-3-85-94

    Article  Google Scholar 

  219. Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL (2022) Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: a focus on the immune system. Front Genet 13:886170. https://doi.org/10.3389/fgene.2022.886170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pacanowski M, Liu Q (2020) Precision medicine 2030. Clin Pharmacol Ther 107:62–4. https://doi.org/10.1002/cpt.1675

    Article  PubMed  Google Scholar 

  221. Roukos DH (2011) Cancer genome explosion and systems biology: impact on surgical oncology? Ann Surg Oncol 18:12–5. https://doi.org/10.1245/s10434-010-1355-y

    Article  PubMed  Google Scholar 

  222. Key BA, Mumba M (2019) Using precision medicine to individualize healthcare. Nursing 49:43–5. https://doi.org/10.1097/01.NURSE.0000569760.88666.61

    Article  PubMed  Google Scholar 

  223. Tobin AA, Little C, Schneider RJ, Thompson VM, Jannetto PJ, Wong SH et al (2008) Pharmacogenomic evaluation of a pediatric dextromethorphan fatality following cold medication therapy: the role of cytochrome P450 2D6 polymorphisms. The FASEB J. https://doi.org/10.1096/fasebj.22.1_supplement.1134.6

    Article  Google Scholar 

  224. Matic M, de Hoogd S, de Wildt SN, Tibboel D, Knibbe CA, van Schaik RH (2020) OPRM1 and COMT polymorphisms: implications on postoperative acute, chronic and experimental pain after cardiac surgery. Pharmacogenomics 21:181–93. https://doi.org/10.2217/pgs-2019-0141

    Article  CAS  PubMed  Google Scholar 

  225. Silva CA, Ribeiro-Dos-Santos A, Goncalves WG, Pinto P, Pantoja RP, Vinasco-Sandoval T et al (2021) Can miRNA indicate risk of illness after continuous exposure to M. tuberculosis? Int J Mol Sci. https://doi.org/10.3390/ijms22073674

    Article  PubMed  PubMed Central  Google Scholar 

  226. Deghmane AE, Taha MK (2021) Invasive bacterial infections in subjects with genetic and acquired susceptibility and impacts on recommendations for vaccination: a narrative review. Microorganisms. https://doi.org/10.3390/microorganisms9030467

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ercisli M, Lechun G, Azeez S, Hamasalih R, Song S, Aziziaram Z (2021) Relevance of genetic polymorphisms of the human cytochrome P450 3A4 in rivaroxaban-treated patients. Cell, Mol Biomed Rep 1:33–41. https://doi.org/10.55705/cmbr.2021.138880.1003

    Article  Google Scholar 

  228. Chenoweth MJ, Giacomini KM, Pirmohamed M, Hill SL, van Schaik RHN, Schwab M et al (2020) Global pharmacogenomics within precision medicine: challenges and opportunities. Clin Pharmacol Ther 107:57–61. https://doi.org/10.1002/cpt.1664

    Article  PubMed  Google Scholar 

  229. Soares FFC, Ferreira D, Raimundini AA, Dionisio TJ, Dos Santos CF, Conti PCR et al (2023) Influence of genetic polymorphisms on mechanical pain sensitivity and endogenous pain modulation of trigeminal and spinal areas. J Oral Rehabil 50:39–53. https://doi.org/10.1111/joor.13384

    Article  CAS  PubMed  Google Scholar 

  230. Su H, Kwok KW, Cleary K, Iordachita I, Cavusoglu MC, Desai JP et al (2022) State of the art and future opportunities in mri-guided robot-assisted surgery and interventions. Proc IEEE Inst Electr Electron Eng 110:968–92. https://doi.org/10.1109/jproc.2022.3169146

    Article  PubMed  PubMed Central  Google Scholar 

  231. Pellegrini G, Rasperini G, Pagni G, Giannobile WV, Milani S, Musto F et al (2017) Local wound healing biomarkers for real-time assessment of periodontal regeneration: pilot study. J Periodontal Res 52:388–96. https://doi.org/10.1111/jre.12403

    Article  CAS  PubMed  Google Scholar 

  232. Hall OM, Peer CJ, Figg WD (2018) Tissue preservation with mass spectroscopic analysis: implications for cancer diagnostics. Cancer Biol Ther 19:953–5. https://doi.org/10.1080/15384047.2018.1456610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sikdar S, Ganguly K, Guha S, Bag S, Barman H (2020) Molecular imaging technology: a promising frontier of interventional radiology. SSRN Electron J. https://doi.org/10.2139/ssrn.3515891

    Article  Google Scholar 

  234. Shurin MR, Baraldi JH, Shurin GV (2021) Neuroimmune regulation of surgery-associated metastases. Cells. https://doi.org/10.3390/cells10020454

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kranke P, Redel A, Schuster F, Muellenbach R, Eberhart LH (2008) Pharmacological interventions and concepts of fast-track perioperative medical care for enhanced recovery programs. Expert Opin Pharmacother 9:1541–64. https://doi.org/10.1517/14656566.9.9.1541

    Article  PubMed  Google Scholar 

  236. Haidegger T, Speidel S, Stoyanov D, Satava RM (2022) Robot-assisted minimally invasive surgery—surgical robotics in the data age. Proc IEEE 110:835–46. https://doi.org/10.1109/jproc.2022.3180350

    Article  Google Scholar 

  237. Brodie A, Vasdev N (2018) The future of robotic surgery. Ann R Coll Surg Engl 100:4–13. https://doi.org/10.1308/rcsann.supp2.4

    Article  PubMed  PubMed Central  Google Scholar 

  238. Black C, Voigts J, Agrawal U, Ladow M, Santoyo J, Moore C et al (2017) Open ephys electroencephalography (Open Ephys + EEG): a modular, low-cost, open-source solution to human neural recording. J Neural Eng 14:035002. https://doi.org/10.1088/1741-2552/aa651f

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There was no financial support for this study.

Author information

Authors and Affiliations

Authors

Contributions

LM and FH: participated in article writing, AR: involved in article writing and final revision, FH and LM: contributed to drawing the manuscript tables and figures, and AN: consented to the final version of the manuscript.

Corresponding author

Correspondence to Alireza Nourazarian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal participants

This article contains no studies with human participants or animals performed by the authors.

Consent for publication

This manuscript has been approved for publication by all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, L., Hosseinzadeh, F. & Nourazarian, A. Biochemical implications of robotic surgery: a new frontier in the operating room. J Robotic Surg 18, 91 (2024). https://doi.org/10.1007/s11701-024-01861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11701-024-01861-6

Keywords

Navigation