Skip to main content
Log in

Theoretical modelling of electrostatic interactions in pH-dependent drug loading and releasing by functionalized mesoporous silica nanoparticles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this article, we provide a theoretical model that predicts the electrostatic attractive and repulsive interactions between an assembly of a host and a guest that exhibits acid–base characteristics in a pH-dependent manner. By using provided experimental data and DFT-based estimates of pH-dependent drug loading and release by functionalized mesoporous silica nanoparticles, the model is proven to be accurate. Alendronate and sulfasalazine are the two drug molecules selected for the two model carrier matrix, propylamine- and trimethylammonium-functionalized mesoporous silica nanoparticles, respectively. The pH-dependent loading and releasing for both the drug molecules agreed well with experimental observations as well as density functional theory calculations. The degree of functionalization modifies the onset of pH for loading and releasing the drug, whereas the concentration of the drug modifies the electrostatic interaction energy. The electrostatic interaction energy reduces as drug concentration increases; however, the releasing pH shifts to higher pH values as functionalization degree rises. Doxorubicin is an anti-cancer therapeutic molecule that is projected to be loaded and released by propylamine-, trimethylammonium-, and poly(acrylic)-functionalized mesoporous silica nanoparticles in a pH-dependent manner. The drug must be functionalized using propylamine at 60% and trimethylammonium at 40% in order for the drug to release at basic pH and stay intact at acidic pH with the carrier matrix. On the other hand, as the degree of functionalization is increased, the releasing pH range for functionalization with poly(acrylic) acid shifts to a lower pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The College of Health Sciences (CHS), UKZN, Durban, South Africa, and Sultan Qaboos University, Oman (Grant No. SR/SCI/PHYS/18/01), both provided funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nashiour Rohman or Adam A. Skelton.

Ethics declarations

Conflict of interest

There is no conflict of interest, the authors would like to state.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohman, N., Mohiuddin, T., Ahmed, K. et al. Theoretical modelling of electrostatic interactions in pH-dependent drug loading and releasing by functionalized mesoporous silica nanoparticles. Chem. Pap. 77, 1507–1518 (2023). https://doi.org/10.1007/s11696-022-02562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02562-w

Keywords

Navigation