Skip to main content

Advertisement

Log in

Plasma FGF-19 Levels are Increased in Patients with Post-Bariatric Hypoglycemia

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Hypoglycemia is an increasingly recognized complication of bariatric surgery. Mechanisms contributing to glucose lowering remain incompletely understood. We aimed to identify differentially abundant plasma proteins in patients with post-bariatric hypoglycemia (PBH) after Roux-en-Y gastric bypass (RYGB), compared to asymptomatic post-RYGB.

Methods

Proteomic analysis of blood samples collected after overnight fast and mixed meal challenge in individuals with PBH, asymptomatic RYGB, severe obesity, or overweight recruited from outpatient hypoglycemia or bariatric clinics.

Results

The top-ranking differentially abundant protein at 120 min after mixed meal was fibroblast growth factor 19 (FGF-19), an intestinally derived hormone regulated by bile acid-FXR signaling; levels were 2.4-fold higher in PBH vs. asymptomatic post-RYGB (mean + SEM, 1094 ± 141 vs. 428 ± 45, P < 0.001, FDR < 0.01). FGF-19 ELISA confirmed 3.5-fold higher concentrations in PBH versus asymptomatic (360 ± 70 vs. 103 ± 18, P = 0.025). To explore potential links between increased FGF-19 and GLP-1, residual samples from other human studies in which GLP-1 was modulated were assayed. FGF-19 levels did not change in response to infusion of GLP-1 and PYY in overweight/obese individuals. Infusion of the GLP-1 receptor antagonist exendin 9–39 in recently operated asymptomatic post-RYGB did not alter FGF-19 levels after mixed meal. By contrast, GLP-1 receptor antagonist infusion yielded a significant increase in FGF-19 levels after oral glucose in individuals with PBH. While plasma bile acids did not differ between PBH and asymptomatic post-RYGB, these data suggest unique interrelationships between GLP-1 and FGF-19 in PBH.

Conclusions

Taken together, these data support FGF-19 as a potential contributor to insulin-independent pathways driving postprandial hypoglycemia in PBH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  2. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Halperin F, Ding SA, Simonson DC, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adams TD, Davidson LE, Litwin SE, et al. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377(12):1143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patti ME, Goldfine AB. The rollercoaster of post-bariatric hypoglycaemia. Lancet Diabetes Endocrinol. 2016;4(2):94–6.

    Article  PubMed  Google Scholar 

  6. Goldfine AB, Patti ME. How common is hypoglycemia after gastric bypass? Obesity (Silver Spring). 2016;24(6):1210–1.

    Article  Google Scholar 

  7. Goldfine AB, Mun EC, Devine E, et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab. 2007;92(12):4678–85.

    Article  CAS  PubMed  Google Scholar 

  8. Craig CM, Liu LF, Deacon CF, et al. Critical role for GLP-1 in symptomatic post-bariatric hypoglycaemia. Diabetologia. 2017;60(3):531–40.

    Article  PubMed  Google Scholar 

  9. Salehi M, Gastaldelli A, D'Alessio DA. Beta-cell sensitivity to glucose is impaired after gastric bypass surgery. Diabetes Obes Metab. 2018;20(4):872–8.

    Article  CAS  PubMed  Google Scholar 

  10. Salehi M, Gastaldelli A, D'Alessio DA. Altered islet function and insulin clearance cause hyperinsulinemia in gastric bypass patients with symptoms of postprandial hypoglycemia. J Clin Endocrinol Metab. 2014;99(6):2008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patti ME, Li P, Goldfine AB. Insulin response to oral stimuli and glucose effectiveness increased in neuroglycopenia following gastric bypass. Obesity (Silver Spring). 2015;23(4):798–807.

    Article  CAS  Google Scholar 

  12. Gavin III JR, Alberti KG, Davidson MB, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20(7):1183–97.

    Article  Google Scholar 

  13. Schmidt JB, Gregersen NT, Pedersen SD, et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab. 2014;306(11):E1248–56.

    Article  CAS  PubMed  Google Scholar 

  14. Svane MS, Jorgensen NB, Bojsen-Moller KN, et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes. 2016;40(11):1699–706.

    Article  CAS  Google Scholar 

  15. Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Argmann CA, Houten SM, Champy MF, Auwerx J. Lipid and bile acid analysis. Curr Protoc Mol Biol. 2006; Chapter 29:Unit 29B.2. https://doi.org/10.1002/0471142727.mb29b02s75.

  17. Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7.

    Article  CAS  Google Scholar 

  18. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Team RDC. R: a language and environment for statistical computing: R Foundation for Statistical Computing; 2007. https://www.r-project.org/about.html.

  20. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.

    Article  CAS  Google Scholar 

  21. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53.

    Article  CAS  PubMed  Google Scholar 

  23. Schirra J, Sturm K, Leicht P, et al. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest. 1998;101(7):1421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salehi M, Gastaldelli A, D'Alessio DA. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. 2014;146(3):669–80 e2.

    Article  CAS  PubMed  Google Scholar 

  25. Xie MH, Holcomb I, Deuel B, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine. 1999;11(10):729–35.

    Article  CAS  PubMed  Google Scholar 

  26. Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145(6):2594–603.

    Article  CAS  PubMed  Google Scholar 

  27. Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7.

    Article  CAS  PubMed  Google Scholar 

  28. Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest. 2013;123(11):4799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu X, Xiong Q, Xu Y, et al. Association of serum fibroblast growth factor 19 levels with visceral fat accumulation is independent of glucose tolerance status. Nutr Metab Cardiovasc Dis. 2018;28(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  31. Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansen PL, van Werven J, Aarts E, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis. 2011;29(1):48–51.

    Article  CAS  PubMed  Google Scholar 

  33. Jorgensen NB, Dirksen C, Bojsen-Moller KN, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396–406.

    Article  CAS  PubMed  Google Scholar 

  34. Nemati R, Lu J, Dokpuang D, et al. Increased bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes Surg. 2018;28:2672–86.

    Article  PubMed  Google Scholar 

  35. Gomez-Ambrosi J, Gallego-Escuredo JM, Catalan V, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2017;36(3):861–8.

    Article  CAS  PubMed  Google Scholar 

  36. Harris LLS, Smith GI, Mittendorfer B, et al. Roux-en-Y gastric bypass surgery has unique effects on postprandial FGF21 but not FGF19 secretion. J Clin Endocrinol Metab. 2017;102(10):3858–64.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Craig CM, Liu LF, Nguyen T, et al. Efficacy and pharmacokinetics of subcutaneous exendin (9-39) in patients with post-bariatric hypoglycaemia. Diabetes Obes Metab. 2018;20(2):352–61.

    Article  CAS  PubMed  Google Scholar 

  38. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flynn CR, Albaugh VL, Cai S, et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun. 2015;6:7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sachdev S, Wang Q, Billington C, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg. 2016;26(5):957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thoni V, Pfister A, Melmer A, et al. Dynamics of bile acid profiles, GLP-1, and FGF19 after laparoscopic gastric banding. J Clin Endocrinol Metab. 2017;102(8):2974–84.

    Article  PubMed  Google Scholar 

  42. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the authors of references [13, 14] for providing surplus plasma samples from these studies to measure FGF-19. We would also like to acknowledge support from the Joslin Clinical Research Center and thank its philanthropic donors.

Funding

This study received research grant funding from the American Society of Metabolic and Bariatric Surgery and Medimmune (both to MEP), a pilot award for plasma proteomic assay from SomaLogic (to MEP), T32 DK007260 and Hearst Fellowship (to CMM), American Diabetes Association 7–13-CE-17 (to ABG), RC1 DK086918 (to ABG), R56 DK095451 (to ABG), and P30 DK036836 (Joslin DRC). This work was conducted with support from Harvard Catalyst|The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health Award UL1 TR001102). NNF Center for Basic Metabolic Research, University of Copenhagen, NNF application number: 13563 (Novo Nordisk Foundation, Denmark), EliteForsk Rejsestipendiat (2016), The Danish Council for Independent Research (DFF–1333-00206A), European Research Council (Grant no.695069), Augustinus Foundation, and Aase og Ejnar Danielsens Fond. The following are the Stanford study funding sources: KL2 TR 001083, UL1 TR001085, and L30 TR001569-01 (to CMC), and a Fellow Pilot Award from the Stanford Translational Research and Applied Medicine (TRAM) Program of Stanford University School of Medicine (to CMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Elizabeth Patti.

Ethics declarations

Conflict of Interest Statement

Dr. Patti has consulted for Eiger Pharmaceuticals; has received investigator-initiated grant support from Janssen Pharmaceuticals, Medimmune, Sanofi, Astra-Zeneca, Jenesis, and Nuclea; has been a site investigator for XOMA; and acknowledges clinical trial research trial product support from Ethicon, Covidien, NovoNordisk, Nestle, and Dexcom within the past 5 years. Dr. Patti and Dr. Goldfine disclose a patent application for plasma proteins contributing to hypoglycemia. Dr. Mulla, Dr. Dreyfuss, Dr. Houten, Dr. Pan, Dr. Pober, Dr. Wewer Albrechtsen, Dr. Svane, Dr. Schmidt, Dr. Holst, Dr. Craig, and Dr. McLaughlin declare no potential competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 3010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, C.M., Goldfine, A.B., Dreyfuss, J.M. et al. Plasma FGF-19 Levels are Increased in Patients with Post-Bariatric Hypoglycemia. OBES SURG 29, 2092–2099 (2019). https://doi.org/10.1007/s11695-019-03845-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03845-0

Keywords

Navigation