Skip to main content

Advertisement

Log in

Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Lateral and medial hypothalamus (LH and MH) play important roles in energy balance. Changed hypothalamic function has been found in subjects with obesity. However, the effect of bariatric surgery on the function of the two sub-regions has been poorly investigated.

Methods

Thirty-eight subjects with obesity and 34 age- and sex-matched normal-weight controls were included. Seventeen of the 38 subjects underwent laparoscopic sleeve gastrectomy. Functional magnetic resonance imaging data and metabolic parameters were collected to investigate functional connectivity networks of the two hypothalamic sub-regions as well as the influence of sleeve gastrectomy on the two networks in subjects with obesity.

Results

Compared to normal-weight controls, pre-surgical subjects had increased functional connectivity (FC) in the reward region (putamen) within the LH network, and increased FC in somatosensory cortical area (insula), as well as decreased FC in the cognitive control regions (prefrontal regions) within the MH network. After the surgery, post-surgical FC of the putamen within the LH network changed towards the patterns found in the control group. Furthermore, the changes in fasting glucose before and after the surgery were associated with the changes in FC of the putamen within the LH network.

Conclusions

The FC within the LH and MH networks were changed in subjects with obesity. Part of these altered FC was rescued after the surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  2. Rexford S, Ahima MAL. The health risk of obesity-better metrics imperative. Science. 2013;341:856–7.

    Article  Google Scholar 

  3. Schlögl H, Horstmann A, Villringer A, et al. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4(8):695–705.

    Article  PubMed  Google Scholar 

  4. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017 Nov 16;18(12):741–52.

    Article  CAS  PubMed  Google Scholar 

  5. Kullmann S, Heni M, Linder K, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35(12):6088–96.

    Article  PubMed  Google Scholar 

  6. Cavadas C, Aveleira CA, Souza GF, et al. The pathophysiology of defective proteostasis in the hypothalamus—from obesity to ageing. Nat Rev Endocrinol. 2016;12(12):723–33.

    Article  CAS  PubMed  Google Scholar 

  7. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78(2):149–72.

    Article  Google Scholar 

  8. Bonnavion P, Mickelsen LE, Fujita A, et al. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol. 2016;594(22):6443–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kempadoo KA, Tourino C, Cho SL, et al. Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci. 2013;33(18):7618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baimel C, Bartlett SE, Chiou LC, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015;172(2):334–48.

    Article  CAS  PubMed  Google Scholar 

  11. Cansell C, Denis RG, Joly-Amado A, et al. Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne). 2012;3:169.

    Article  CAS  Google Scholar 

  12. Konner AC, Klockener T, Bruning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav. 2009;97(5):632–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pandit R, Omrani A, Luijendijk MC, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology. 2016;41(9):2241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.

    Article  CAS  PubMed  Google Scholar 

  15. Jastreboff AM, Sinha R, Arora J, et al. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes. 2016;65(7):1929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heni M, Kullmann S, Ketterer C, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp. 2014;35(3):918–28.

    Article  PubMed  Google Scholar 

  17. Frank S, Linder K, Kullmann S, et al. Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. Am J Clin Nutr. 2012;95(6):1342–9.

    Article  CAS  PubMed  Google Scholar 

  18. Roth CL, Eslamy H, Werny D, et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23(6):1226–33.

    Article  Google Scholar 

  19. Thaler JP, Yi C-X, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    Article  Google Scholar 

  20. Carus-Cadavieco M, Gorbati M, Ye L, et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 2017;542(7640):232–6.

    Article  CAS  PubMed  Google Scholar 

  21. Lips MA, Wijngaarden MA, van der Grond J, et al. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr. 2014;100(2):524–31.

    Article  CAS  PubMed  Google Scholar 

  22. Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60(6):1699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wijngaarden MA, Veer IM, Rombouts SA, et al. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res. 2015;287:127–34.

    Article  CAS  PubMed  Google Scholar 

  24. Hinkle W, Cordell M, Leibel R, et al. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2012;8(3):e59114.

    Article  CAS  Google Scholar 

  25. Halpern CH, Wolf JA, Bale TL, et al. Deep brain stimulation in the treatment of obesity. J Neurosurg. 2008;109(4):625–34.

    Article  PubMed  Google Scholar 

  26. Whiting DM, Tomycz ND, Bailes J, et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119(1):56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.

    Article  PubMed  Google Scholar 

  28. Wiemerslage L, Zhou W, Olivo G, et al. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45(3):333–41.

    Article  PubMed  Google Scholar 

  29. Karlsson HK, Tuulari JJ, Tuominen L, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21(8):1057–62.

    Article  CAS  PubMed  Google Scholar 

  30. Rullmann M, Preusser S, Poppitz S, et al. Gastric-bypass surgery induced widespread neural plasticity of the obese human brain. NeuroImage. 2018;172:853–63.

    Article  PubMed  Google Scholar 

  31. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.

    PubMed  PubMed Central  Google Scholar 

  32. Baroncini M, Jissendi P, Balland E, et al. MRI atlas of the human hypothalamus. NeuroImage. 2012;59(1):168–80.

    Article  PubMed  Google Scholar 

  33. Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011;6(9):e25031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chow S-C, Wang H, Shao J. Sample size calculations in clinical research. Second ed. London: CRC Press; 2007.

    Book  Google Scholar 

  35. Marques-Iturria I, Scholtens LH, Garolera M, et al. Affected connectivity organization of the reward system structure in obesity. NeuroImage. 2015;111:100–6.

    Article  CAS  PubMed  Google Scholar 

  36. Draganski B, Kherif F, Kloppel S, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drew Sayer R, Tamer Jr GG, Chen N, et al. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity. Obesity (Silver Spring). 2016;24(10):2057–63.

    Article  CAS  Google Scholar 

  38. Jones KT, Woods C, Zhen J, et al. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem. 2017;140(5):728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36:1992–211.

    Article  Google Scholar 

  40. Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci. 2007;27(26):6948–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci. 2016;19(2):198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Domingos AI, Sordillo A, Dietrich MO, et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife. 2013;2:e01462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24(12):3086–93.

    Article  CAS  PubMed  Google Scholar 

  44. Simmons WK, Avery JA, Barcalow JC, et al. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34(11):2944–58.

    Article  PubMed  Google Scholar 

  45. Mcguire JT, Botvinick MM. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc Natl Acad Sci U S A. 2010;107(17):7922–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wright H, Li X, Fallon NB, et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur J Neurosci. 2016;43(9):1181–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Geha P, Cecchi G, Todd Constable R, et al. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38(3):1403–20.

    Article  PubMed  Google Scholar 

  48. Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, et al. Disrupted functional connectivity in adolescent obesity. Neuroimage Clin. 2016;12:262–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tuulari JJ, Karlsson HK, Antikainen O, et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum Brain Mapp. 2016;37(11):3745–56.

    Article  Google Scholar 

  50. Frank S, Wilms B, Veit R, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38(3):341–8.

    Article  CAS  Google Scholar 

  51. Spitznagel MB, Hawkins M, Alosco M, et al. Neurocognitive effects of obesity and bariatric surgery. Eur Eat Disord Rev. 2015;23(6):488–95.

    Article  PubMed  Google Scholar 

  52. Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.

    Article  CAS  PubMed  Google Scholar 

  53. Chiappetta S, Schaack HM, Wolnerhannsen B, et al. The impact of obesity and metabolic surgery on chronic inflammation. Obes Surg. 2018;28(10):3028–40.

    Article  PubMed  Google Scholar 

  54. Ochner CN, Gibson C, Shanik M, et al. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes. 2011;35(2):153–66.

    Article  CAS  Google Scholar 

  55. Anderson B, Switzer NJ, Almamar A, et al. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. Obes Surg. 2013 Sep;23(9):1476–80.

    Article  PubMed  Google Scholar 

  56. Churm R, Davies JS, Stephens JW, et al. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  57. Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.

    Article  CAS  Google Scholar 

  58. Bruce AS, Bruce JM, Ness AR, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring). 2014;22(2):337–43.

    Article  Google Scholar 

  59. Ness A, Bruce J, Bruce A, et al. Pre-surgical cortical activation to food pictures is associated with weight loss following bariatric surgery. Surg Obes Relat Dis. 2014;10(6):1188–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to gratefully thank the patients and healthy volunteers taking part in this study.

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 81471741, 81471728, 81671770].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Ma, Demin Li or Baoci Shan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement and Consent Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Shan, H., Nie, B. et al. Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity. OBES SURG 29, 2191–2199 (2019). https://doi.org/10.1007/s11695-019-03822-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03822-7

Keywords

Navigation