Skip to main content

Advertisement

Log in

Metabolic Surgery for Type 2 Diabetes in Patients with a BMI of <35 kg/m2: A Surgeon’s Perspective

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Bariatric surgery was developed with the aim of weight reduction. Success was defined only by excess weight loss. Other indices of resolution of metabolic comorbidities were reported, but were mostly secondary. Several communications have reported that regardless of body mass index (BMI), complete or partial remission of type 2 diabetes mellitus (T2DM) is possible. These results mostly occur before weight loss, positioning metabolic surgery as a good tool for controlling the current T2DM epidemic. Medical treatment is evolving, but is expensive and not risk-free. Surgery aimed mainly at diseases such as diabetes and not weight loss are referred to as “metabolic surgery.” Metabolic surgery has been proven to be safe and effective, and although more data are needed, it is unquestionable that a new discipline has been founded. Metabolic surgery can effectively treat T2DM in individuals with any BMI, including that below 35 kg/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Murray P, Chune GW, Raghavan VA. Legacy effects from DCCT and UKPDS: what they mean and implications for future diabetes trials. Curr Atheroscler Rep. 2010;12(6):432–9.

    Article  PubMed  Google Scholar 

  2. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.

    Article  PubMed  Google Scholar 

  3. Grant RW, Buse JB, Meigs JB, et al. Quality of diabetes care in U.S. academic medical centers: low rates of medical regimen change. Diabetes Care. 2005;28(2):337–42.

    Article  PubMed  Google Scholar 

  4. DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011;34 Suppl 2:S202–9.

    Article  PubMed  Google Scholar 

  5. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  6. Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  7. Shah SS, Todkar JS, Shah PS, et al. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index. Surg Obes Relat Dis. 2010;6(4):332–8.

    Article  PubMed  Google Scholar 

  8. Cohen RV, Rubino F, Schiavon C, et al. Diabetes remission without weight loss after duodenal bypass surgery. Surg Obes Relat Dis. 2011;8(5):66–8.

  9. Cohen RV, Schiavon CA, Pinheiro Filho JC, et al. Laparoscopic bariatric surgery: new technologies, trends and perspectives. Rev Hosp Clin Fac Med Sao Paulo. 2003;58(5):I–VIII.

    PubMed  Google Scholar 

  10. Geloneze B, Geloneze SR, Chaim E, et al. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study. Ann Surg. 2012;256(1):72–8.

    Article  PubMed  Google Scholar 

  11. DePaula AL, Macedo ALV, Rassi N, et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc. 2007;22(3):706–16.

    Article  Google Scholar 

  12. Cummings DE, Flum DR. Gastrointestinal surgery as a treatment for diabetes. JAMA: The Journal of the American Medical Association. 2008;299(3):341–3.

    Article  CAS  Google Scholar 

  13. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;31:S290–6.

    Article  PubMed  Google Scholar 

  14. Pories WJ, Dohm LG, Mansfield CJ. Beyond the BMI: the search for better guidelines for bariatric surgery. Obesity (Silver Spring). 2009;18(5):865–71.

    Article  Google Scholar 

  15. Sjöström L, Lindroos A-K, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  16. Jahangiri Noudeh Y, Hadaegh F, Vatankhah N, et al. Wrist circumference as a novel predictor of diabetes and prediabetes: results of cross-sectional and 8.8-year follow-up studies. J Clin Endocrinol Metab. 2013;98:777–84.

    Article  PubMed  CAS  Google Scholar 

  17. Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.

    Article  PubMed  Google Scholar 

  18. Stefan N, Haring H-U. The metabolically benign and malignant fatty liver. Diabetes. 2011;60(8):2011–7.

    Article  PubMed  CAS  Google Scholar 

  19. Fabbrini E, Magkos F, Mohammeda BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. PNAS. 2009;106(36):15430–5.

    Article  PubMed  CAS  Google Scholar 

  20. Targher G, Byrne CD. Nonalcoholic fatty liver disease: a novel cardiometabolic risk factor for type 2 diabetes and its complications. J Clin Endocrinol Metab. 2013;98(2):483–95.

    Article  PubMed  CAS  Google Scholar 

  21. Isbell JM, Tamboli RA, Hansen EN, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson JW, Konz EC, Frederich RC, et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74(5):579–84.

    PubMed  CAS  Google Scholar 

  23. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.

    Article  PubMed  CAS  Google Scholar 

  24. Rubino F. Bariatric surgery: effects on glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2006;9:497–507.

    Article  PubMed  CAS  Google Scholar 

  25. Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.

    Article  PubMed  Google Scholar 

  26. Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2: a report of 2 cases. Surg Obes Relat Dis. 2007;3(2):195–7.

    Article  PubMed  Google Scholar 

  27. Cohen R, Caravatto PP, Correa JL, et al. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. Surg Obes Relat Dis. 2012;8(4):375–80.

  28. Pournaras DJ, Osborne A, Hawkins SC, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.

    Article  PubMed  Google Scholar 

  29. Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.

    Article  PubMed  CAS  Google Scholar 

  30. Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15(4):474–81.

    Article  PubMed  Google Scholar 

  31. Kashyap SR, Daud S, Kelly KR, et al. Acute effects of gastric bypass versus gastric restrictive surgery on β-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes. 2010;34:462–71.

    Article  CAS  Google Scholar 

  32. Garrido-Sanchez L, Murri M, Rivas-Becerra J, et al. Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. SOARD. American Society for Metabolic and Bariatric Surgery. 2011;8(2):145–50.

    Google Scholar 

  33. Cummings DE. Gastric bypass and nesidioblastosis—too much of a good thing for islets? N Engl J Med. 2005;353(3):300–2.

    Article  PubMed  CAS  Google Scholar 

  34. Service GJ, Thompson GB, Service FJ, et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353(3):249–54.

    Article  PubMed  CAS  Google Scholar 

  35. Goldfine AB, Mun EC, Devine E, et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab. 2007;92(12):4678–85.

    Article  PubMed  CAS  Google Scholar 

  36. McLaughlin T, Peck M, Holst J, et al. Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J Clin Endocrinol Metab. 2010;95(4):1851–5.

    Article  PubMed  CAS  Google Scholar 

  37. Cohen RV, Pinheiro JC, Schiavon CA, et al. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8.

  38. Klein S, Fabbrini E, Patterson BW, et al. Moderate effect of duodenal-jejunal bypass surgery on glucose homeostasis in patients with type 2 diabetes. Obesity (Silver Spring). 2009;20(6):1266–72.

    Article  CAS  Google Scholar 

  39. Lee W-J, Chong K, Ser K-H, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8.

    Article  PubMed  Google Scholar 

  40. Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients. Obes Surg. 2011;21(7):896–901.

    Article  PubMed  Google Scholar 

  41. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  42. Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI <35 kg/m2: an integrative review of early studies. Obes Surg. 2010;20(6):776–90.

    Article  PubMed  CAS  Google Scholar 

  43. Chiellini C, Rubino F, Castagneto M, et al. The effect of bilio-pancreatic diversion on type 2 diabetes in patients with BMI. Diabetologia. 2009;52(6):1027–30.

    Article  PubMed  CAS  Google Scholar 

  44. Franco JVA, Ruiz PA, Palermo M, et al. A review of studies comparing three laparoscopic procedures in bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg. 2011;21(9):1458–68.

    Article  PubMed  Google Scholar 

  45. Bohdjalian A, Langer FB, Shakeri-Leidenmühler S, et al. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes Surg. 2010;20(5):535–40.

    Article  PubMed  Google Scholar 

  46. Kakoulidis TP, Karringer Å, Gloaguen T, et al. Initial results with sleeve gastrectomy for patients with class I obesity (BMI 30–35 kg/m2). Surg Obes Relat Dis. 2010;5(4):425–8.

    Article  Google Scholar 

  47. Lee W-J, Ser K-H, Chong K, et al. Laparoscopic sleeve gastrectomy for diabetes treatment in nonmorbidly obese patients: efficacy and change of insulin secretion. Surgery. 2010;147(5):664–9.

    Article  PubMed  Google Scholar 

  48. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 350–2.

    Article  PubMed  CAS  Google Scholar 

  49. Schauer PR, Burguera B, Ikramuddin S. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–85.

    PubMed  Google Scholar 

  50. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA: The Journal of the American Medical Association. 2004;292(14):1724–37.

    Article  CAS  Google Scholar 

  51. Cohen R, Pinheiro JS, Correa JL, et al. Laparoscopic Roux-en-Y gastric bypass for BMI. Surg Obes Relat Dis. 2006;2(3):401–4. discussion 404.

  52. Proczko-Markuszewska M, Stefaniak T, Kaska Ł, et al. Early results of Roux-en-Y gastric by-pass on regulation of diabetes type 2 in patients with BMI above and below 35 kg/m2. Pol Przegl Chir. 2011;83(2):81–6.

    PubMed  Google Scholar 

  53. de Sa Tavares VC, Ferraz AA, Campos JM, et al. Gastric bypass in the treatment of type 2 diabetes in patients with a BMI of 30 to 35 kg/m2. Obes Surg. 2011;21(3):283–7.

    Article  Google Scholar 

  54. Lee WJ, Wang W, Lee YC, et al. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI>35 and <35 kg/m2. J Gastrointest Surg. 2008;12(5):945–52.

  55. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  PubMed  CAS  Google Scholar 

  56. Scopinaro N, Adami GF, Papadia FS, et al. Effects of biliopanceratic diversion on type 2 diabetes in patients with BMI 25 to 35. Ann Surg. 2011;253(4):699–703.

    Article  PubMed  Google Scholar 

  57. Patriti A, Facchiano E, Annetti C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15(9):1258–64.

    Article  PubMed  Google Scholar 

  58. Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 2446.e1.

    Article  PubMed  CAS  Google Scholar 

  59. Strader AD, Clausen TR, Goodin SZ, et al. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes Surg. 2008;19(1):96–104.

    Article  PubMed  Google Scholar 

  60. Kumar KH, Ugale S, Gupta N, et al. Ileal interposition with sleeve gastrectomy for control of type 2 diabetes. Diabetes Technol Ther. 2009;11(12):785–9.

    Article  PubMed  Google Scholar 

  61. Kota SK, Ugale S, Gupta N, et al. Ileal interposition with sleeve gastrectomy for treatment of type 2 diabetes mellitus. Indian J Endocrinol Metab. 2012;16(4):589–98.

    Article  PubMed  CAS  Google Scholar 

  62. de Paula AL, Macedo ALV, Prudente AS, et al. Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”)—pilot study of a new operation. SOARD. 2006;2(4):464–7.

    Google Scholar 

  63. Tinoco A, El-Kadre L, Aquiar L, et al. Short-term and mid-term control of type 2 diabetes mellitus by laparoscopic sleeve gastrectomy with ileal interposition. World J Surg. 2011;35(10):2238–44.

  64. De Paula AL, Stival AR, Macedo A, et al. Prospective randomized controlled trial comparing 2 versions of laparoscopic ileal interposition associated with sleeve gastrectomy for patients with type 2 diabetes with BMI 21–34 kg/m2. Surg Obes Relat Dis. 2011;6(3):296–304.

    Article  Google Scholar 

  65. Kota SK, Ugale S, Gupta N, et al. Laparoscopic ileal interposition with diverted sleeve gastrectomy for treatment of type 2 diabetes. Diabetes Metab Syndr. 2012;6(3):125–31.

    Article  PubMed  Google Scholar 

  66. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  Google Scholar 

  67. Speck M, Cho YM, Asadi A, et al. Duodenal–jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. AJP: Endocrinology and Metabolism. 2011;300(5):E923–32.

    Article  CAS  Google Scholar 

  68. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18:950–5.

    Article  PubMed  CAS  Google Scholar 

  69. Gavin TP, Sloan RC, Lukosius EZ, et al. Duodenal–jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto–Kakizaki type 2 diabetic rats. Obes Surg. 2011;21(2):231–7.

    Article  PubMed  Google Scholar 

  70. Wang Y, Zhang Z-Z, Wang L, et al. [Effect of blood glucose control after small intestine exclusion surgery in Goto–Kakizaki rat with type 2 diabetes mellitus]. Zhonghua Yi Xue Za Zhi. 2009;89(40):2858–61.

  71. Geloneze B, Geloneze SR, Fiori C, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal–jejunal exclusion. Obes Surg. 2009;19(8):1077–83.

    Article  PubMed  Google Scholar 

  72. Ramos AC, Neto MG, de Souza YM, et al. Laparoscopic duodenal–jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI <30 kg/m2. Obes Surg. 2009;19:307–12.

  73. Cohen RV, Neto MG, Correa JL, et al. A pilot study of the duodenal–jejunal bypass liner in low body mass index type 2 diabetes. J Clin Endocrinol Metab. 2013;98:E279–82.

    Article  PubMed  CAS  Google Scholar 

  74. Yamaoka K, Tango T. Efficacy of lifestyle education to prevent type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2005;28(11):2780–6.

    Article  PubMed  Google Scholar 

  75. Li Q, Chen L, Yang Z, et al. Metabolic effects of bariatric surgery in type 2 diabetic patients with body mass index. Diabetes Obes Metab. 2011;14(3):262–70.

    Article  PubMed  Google Scholar 

  76. Look AHEAD, Group R, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD Trial. Arch Intern Med. 2010;170(17):1566–75.

    Article  Google Scholar 

  77. Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.

    Article  PubMed  CAS  Google Scholar 

  78. Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2012;23(1):93–102.

    Article  Google Scholar 

  79. Arterburn DE, O’Connnor PJ. A look ahead at the future of diabetes prevention and treatment. JAMA. 2012;308:2517–8.

    Article  PubMed  CAS  Google Scholar 

  80. Dixon JB, Zimmet P, Alberti KG, et al. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28:628–42.

    Article  PubMed  CAS  Google Scholar 

  81. Nathan DM. Finding new treatments for diabetes—how many, how fast… how good? N Engl J Med. 2007;356:437–40.

    Article  PubMed  CAS  Google Scholar 

  82. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009;32(1):193–203.

    Article  PubMed  CAS  Google Scholar 

  83. De Valk HW. DPP-4 inhibitors and combined treatment in type 2 diabetes: re-evaluation of clinical success and safety. Rev Diabet Stud. 2007;4:126–33.

    Article  PubMed  Google Scholar 

  84. Donekal S, Shomali ME. Effectiveness of the novel anti-diabetes medication exenatide in everyday practice: comparison with clinical trials. Diabetes Res Clin Pract. 2008;80(2):e4–6.

    Article  PubMed  CAS  Google Scholar 

  85. Pratley RE, Kipnes MS, Fleck PR, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabet Obes Metab. 2009;11(2):167–76.

    Article  CAS  Google Scholar 

  86. Polonsky KS. The past 200 years in diabetes. N Engl J Med. 2012;367(14):1332–40.

    Article  PubMed  CAS  Google Scholar 

  87. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 2007;298(2):194–206.

    Article  PubMed  CAS  Google Scholar 

  88. Sinha A, Rajan M, Hoerger T, et al. Costs and consequences associated with newer medications for glycemic control in type 2 diabetes. Diabetes Care. 2010;33(4):695–700.

    Article  PubMed  Google Scholar 

  89. Lautz D, Halperin F, Goebel-Fabbri A, et al. The great debate: medicine or surgery: what is best for the patient with type 2 diabetes? Diabetes Care. 2011;34(3):763–70.

    Article  PubMed  Google Scholar 

  90. Dixon JB, Schachter LM, O’Brien PE, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308(11):1142–9.

    Article  PubMed  CAS  Google Scholar 

  91. Gaede P, Lund-Andersen H, Parving H-H, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  PubMed  CAS  Google Scholar 

  92. Romeo S, Maglio C, Burza MA, et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care. 2012;35(12):2613–7.

    Article  PubMed  CAS  Google Scholar 

  93. Christou NV, Sampalis JS, Liberman M, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416–24.

    Article  PubMed  Google Scholar 

  94. Psaty BM, Furberg CD. Rosiglitazone and cardiovascular risk. N Engl J Med. 2007;356(24):2522–4.

    Article  PubMed  CAS  Google Scholar 

  95. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  PubMed  CAS  Google Scholar 

  96. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170:1191–201.

    Article  PubMed  CAS  Google Scholar 

  97. Sarafidis PA, Lasaridis AN, Nilsson PM, et al. The effect of rosiglitazone on novel atherosclerotic risk factors in patients with type 2 diabetes mellitus and hypertension. Metabolism. 2005;54(9):1236–42.

    Article  PubMed  CAS  Google Scholar 

  98. Diamond GA, Bax L, Kaul S. Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death. Ann Intern Med. 2007;147(8):578–81.

    Article  PubMed  Google Scholar 

  99. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  PubMed  CAS  Google Scholar 

  100. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–95.

    Article  PubMed  CAS  Google Scholar 

  101. Wei L, Macdonald TM, Mackenzie IS. Pioglitazone and bladder cancer: a propensity score matched cohort study. Br J Clin Pharmacol. 2013;75(1):254–9.

    Article  PubMed  CAS  Google Scholar 

  102. Govindan J, Evans M. Pioglitazone in clinical practice: where are we now? Diabetes Ther. 2012;3(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  103. Piccinni C, Motola D, Marchesini G, et al. Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting. Diabetes Care. 2011;34(6):1369–71.

    Article  PubMed  Google Scholar 

  104. Zhu Z, Shen Z, Lu Y, et al. Increased risk of bladder cancer with pioglitazone therapy in patients with diabetes: a meta-analysis. Diabetes Res Clin Pract. 2012;98(1):159–63.

    Article  PubMed  CAS  Google Scholar 

  105. Aubert RE, Herrera V, Chen W, et al. Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabet Obes Metab. 2010;12(8):716–21.

    Article  CAS  Google Scholar 

  106. Song SO, Kim KJ, Lee B-W, et al. The risk of bladder cancer in Korean diabetic subjects treated with pioglitazone. Diabetes Metab J. 2012;36(5):371–8.

    Article  PubMed  Google Scholar 

  107. Ferrara A, Lewis JD, Quesenberry CP, et al. Cohort study of pioglitazone and cancer incidence in patients with diabetes. Diabetes Care. 2011;34:923–9.

    Article  PubMed  CAS  Google Scholar 

  108. Kopec KT, Kowalski MJ. Metformin-associated lactic acidosis (MALA): case files of the Einstein Medical Center Medical Toxicology Fellowship. J Med Toxicol. 2013;9:61–6.

    Article  PubMed  Google Scholar 

  109. Cicero AFG, Tartagni E, Ertek S. Metformin and its clinical use: new insights for an old drug in clinical practice. Arch Med Sci. 2012;8(5):907–17.

    Article  PubMed  CAS  Google Scholar 

  110. Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med. 2003;163(21):2594–602.

    Article  PubMed  Google Scholar 

  111. Kajbaf F, Lalau J-D. The criteria for metformin-associated lactic acidosis: the quality of reporting in a large pharmacovigilance database. Diabet Med. 2013;30:345–8.

    Article  PubMed  CAS  Google Scholar 

  112. Dixit A, Pandey P. Rosiglitazone and pioglitazone. Beware fractures. BMJ. 2009;339:b3957.

    Article  PubMed  Google Scholar 

  113. Douglas IJ, Evans SJ, Pocock S, et al. The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med. 2009;6(9):e1000154.

    Article  PubMed  CAS  Google Scholar 

  114. Mamtani R, Haynes K, Bilker WB, et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. J Natl Cancer Inst. 2012;104(18):1411–21.

    Article  PubMed  CAS  Google Scholar 

  115. Lee PH, Stockton MD, Franks AS. Acute pancreatitis associated with liraglutide. Ann Pharmacother. 2011;45(4):e22–2.

    Article  PubMed  Google Scholar 

  116. Alves C, Batel-Marques F, Macedo AF. A meta-analysis of serious adverse events reported with exenatide and liraglutide: acute pancreatitis and cancer. Diabetes Res Clin Pract. 2012;98(2):271–84.

    Article  PubMed  CAS  Google Scholar 

  117. Sternthal E. Incretin-based therapy and pancreatitis—what is the risk? Endocr Pract. 2011;17:334–6.

    Article  PubMed  Google Scholar 

  118. Anderwald C-H, Tura A, Promintzer-Schifferl M, et al. Alterations in gastrointestinal, endocrine, and metabolic processes after bariatric Roux-en-Y gastric bypass surgery. Diabetes Care. 2012;35(12):2580–7.

    Article  PubMed  CAS  Google Scholar 

  119. Elashoff M, Matveyenko AV, Gier B, et al. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. YGAST (Internet). 2011;141(1):150–6.

  120. Parks M, Rosebraugh C. Weighing risks and benefits of liraglutide—the FDA’s review of a new antidiabetic therapy. N Engl J Med. 2010;362(9):774–7.

    Article  PubMed  CAS  Google Scholar 

  121. Shukla AP, Ahn SM, Patel RT, et al. Surgical treatment of type 2 diabetes: the surgeon perspective. Endocrine. 2011;40(2):151–61.

    Article  PubMed  CAS  Google Scholar 

  122. Wolfe BM, Morton JM. Weighing in on bariatric surgery: procedure use, readmission rates, and mortality. JAMA. 2005;294(15):1960–3.

    Article  PubMed  CAS  Google Scholar 

  123. DeMaria EJ, Pate V, Warthen M, et al. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis. 2010;6:347–55.

    Article  PubMed  Google Scholar 

  124. Maciejewski ML, Winegar DA, Farley JF, et al. Risk stratification of serious adverse events after gastric bypass in the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis. 2012;8(6):671–7.

    Article  PubMed  Google Scholar 

  125. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93(11_Supplement_1):89–96.

    Article  CAS  Google Scholar 

  126. Pratt GM, McLees B, Pories WJ. The ASBS Bariatric Surgery Centers of Excellence program: a blueprint for quality improvement. Surg Obes Relat Dis. 2006;2(5):497–503.

    Article  PubMed  Google Scholar 

  127. DeMaria EJ, Winegar DA, Pate VW, et al. Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS Bariatric Surgery Center of Excellence Program as reported in the Bariatric Outcomes Longitudinal Database. Ann Surg. 2010;252(3):559–66.

    PubMed  Google Scholar 

  128. Bal BS, Finelli FC, Shope TR, et al. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8(9):544–56.

    Article  PubMed  CAS  Google Scholar 

  129. Davies DJ, Baxter JM, Baxter JN. Nutritional deficiencies after bariatric surgery. Obes Surg. 2007;17(9):1150–8.

    Article  PubMed  CAS  Google Scholar 

  130. Rubino F, Schauer PR, Kaplan LM. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Ann Rev Med. 2010;61:393–411.

    Article  PubMed  CAS  Google Scholar 

  131. Madan AK. Metabolic surgery: not just weight loss surgery anymore. Surg Obes Relat Dis. 2009;5(1):18–9.

    Article  PubMed  Google Scholar 

  132. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  PubMed  CAS  Google Scholar 

  133. Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit Consensus Conference. Ann Surg. 2010;251(3):399–405.

    Article  PubMed  Google Scholar 

  134. American Diabetes Association. Standards of medical care in diabetes—2013. Diabetes Care. 2013;36 Suppl 1:11–66.

    Article  CAS  Google Scholar 

  135. Zimmet P, Alberti KGM, Rubino F, et al. IDF’s view of bariatric surgery in type 2 diabetes. Lancet. 2011;378(9786):108–10.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

All authors declare no conflict of interest.

Ricardo Cohen - Research Grant from Covidien, Mansfield, USA

Reserach Grant - Johnson and Johnson Medical Brasil

Research Grant - GI Dynamics, Boston, USA

Scientific Advisory Board - GI Dynamics, Boston USA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R., Caravatto, P.P. & Petry, T. Metabolic Surgery for Type 2 Diabetes in Patients with a BMI of <35 kg/m2: A Surgeon’s Perspective. OBES SURG 23, 809–818 (2013). https://doi.org/10.1007/s11695-013-0930-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-0930-2

Keywords

Navigation