Skip to main content

Advertisement

Log in

Gut Hormones and Leptin: Impact on Energy Control and Changes After Bariatric Surgery—What the Future Holds

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Obesity is now considered the new world epidemic. In an attempt to face this menace to public health, several treatments, apart from the traditional nutritional modification and oral medication, have been introduced, among them bariatric surgery and gut hormone-based treatments. The gastrointestinal (GI) tract is a powerful endocrine organ, releasing active peptides and influencing appetite and glycaemic control. Alteration of the GI tract, in ways that exaggerate the secretion and levels of the gut hormones, creates a new functional equilibrium that further contributes to weight loss. The purpose of this review is to explore the mechanisms that drive this gut hormone-derived body regulation, as well as the changes that occur to them after bariatric surgery. Close to that, leptin, a hormone secreted by adipose tissue will be analysed, as its pathways are closely related to those of the gut hormones. Gut hormones are strongly implicated in energy control, and various effects of bariatric surgery in weight loss are directly related to the alteration of the levels of these hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AgRP:

Agouti-related peptide

AMPK:

AMP-activated protein kinase

ARC:

Arcuate nucleus

α-MSH:

Alpha-melanocyte-stimulating hormone

BMI:

Body mass index

CNS:

Central nervous system

CART:

Cocaine- and amphetamine-regulated transcript

DPP4:

Dipeptidyl peptidase-4

GHS-R:

Growth hormone secretagogue receptor

GIP:

Glucose-dependent insulinotropic peptide

GLP-1:

Glucagon-like peptide-1

HbA1c:

Glycated haemoglobin

HOMA-IR:

Homeostasis assessment model of insulin resistance

NPY:

Neuropeptide Y

NTS:

Nucleus of the solitary tract

OXM:

Oxyntomodulin

POMC:

Pro-opiomelanocortin

PP:

Pancreatic polypeptide

PVN:

Paraventricular nucleus

PYY(3–36) :

Peptide YY(3–36)

RYGB:

Roux-en-Y gastric bypass

References

  1. Angelopoulos N, Goula A, Tolis G. Current knowledge in the neurophysiologic modulation of obesity. Metabolism. 2005;54(9):1202–17.

    Article  PubMed  CAS  Google Scholar 

  2. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.

    Article  PubMed  CAS  Google Scholar 

  3. Budak E, Sanchez F, Bellver J, et al. Interactions of the hormones leptin, ghrelin, adiponectin, resistin and PYY3-36 with the reproductive system. Fertil Steril. 2006;85(6):1563–81.

    Article  PubMed  CAS  Google Scholar 

  4. Lammert A, Kiess W, Bottner A, et al. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun. 2001;283(4):982–8.

    Article  PubMed  CAS  Google Scholar 

  5. Moreno-Aliaga MJ, Lorente-Cebrian S, Martinez JA. 3rd International Immunonutrition Workshop. Session 3: fatty acids and the immune system. Regulation of adipokine secretion by n-3 fatty acids. Proc Nutr Soc. 2010;69:324–32.

    Article  PubMed  CAS  Google Scholar 

  6. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    Article  PubMed  CAS  Google Scholar 

  7. Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem. 2004;50(9):1511–25.

    Article  PubMed  CAS  Google Scholar 

  8. Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med. 2001;226:963–77.

    CAS  Google Scholar 

  9. Sinha MK, Ohannesian JP, Heiman ML, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97:1344–7.

    Article  PubMed  CAS  Google Scholar 

  10. Schoeller DA, Cella LK, Sinha MK, et al. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest. 1997;100:1882–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hamnvik OP, Liu X, Petrou M, et al. Soluble leptin receptor and leptin are associated with baseline adiposity and metabolic risk factors, and predict adiposity, metabolic syndrome, and glucose levels at 2-year follow-up: the Cyprus Metabolism Prospective Cohort Study. Metabolism. 2011;60(7):987–93.

    Article  PubMed  CAS  Google Scholar 

  12. Gale SM, Castracane VD, Mantzoros CS. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr. 2004;134:295–8.

    PubMed  CAS  Google Scholar 

  13. Lee YH, Magkos F, Mantzoros CS, et al. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism. 2011;60(12):1664–72.

    Article  PubMed  CAS  Google Scholar 

  14. Keim NL, Stern JS, Havel PJ. Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. Am J Clin Nutr. 1998;68:794–801.

    PubMed  CAS  Google Scholar 

  15. Westerterp-Plantenga MS, Saris WH, Hukshorn CJ, et al. Effects of weekly administration of pegylated recombinant human OB protein on appetite profile and energy metabolism in obese men. Am J Clin Nutr. 2001;74:426–34.

    PubMed  CAS  Google Scholar 

  16. Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab. 2009;296:E1230–8.

    Article  PubMed  CAS  Google Scholar 

  17. Niswender KD, Morton GJ, Stearns WH, et al. Intracellular signalling: key enzyme in leptin-induced anorexia. Nature. 2001;413(6858):794–5.

    Article  PubMed  CAS  Google Scholar 

  18. Sainsbury A, Cooney GJ, Herzog H. Hypothalamic regulation of energy homeostasis. Best Pract Res Clin Endocrinol Metab. 2002;16:623–7.

    Article  PubMed  CAS  Google Scholar 

  19. Magni P. Hormonal control of the neuropeptide Y system. Curr Protein Pept Sci. 2003;4:45–57.

    Article  PubMed  CAS  Google Scholar 

  20. Fernández-Riejos P, Najib S, Santos-Alvarez J, et al. Role of leptin in the activation of immune cells. Mediators Inflamm. 2010;2010:568343.

    Article  PubMed  Google Scholar 

  21. Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes. 2004;53 Suppl 1:S143–51.

    Article  PubMed  CAS  Google Scholar 

  22. Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology. 2007;137:2116–30.

    Article  Google Scholar 

  23. Vincent RP, Ashrafian H, leRoux C. Mechanisms of disease: the role of gastrointestinal hormones in appetite and obesity. Nat Clin Pract Gastroenterol Hepatol. 2008;5:268–77.

    Article  PubMed  CAS  Google Scholar 

  24. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.

    PubMed  CAS  Google Scholar 

  25. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY (3–36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  PubMed  CAS  Google Scholar 

  26. Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res. 2005;1043:139–44.

    Article  PubMed  CAS  Google Scholar 

  27. Halatchev IG, Cone RD. Peripheral administration of PYY(3–36) produces conditioned taste aversion in mice. Cell Metab. 2005;1:159–68.

    Article  PubMed  CAS  Google Scholar 

  28. Adrian TE, Savage AP, Sagor GR, et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology. 1985;89:494–9.

    PubMed  CAS  Google Scholar 

  29. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  Google Scholar 

  30. Schonhoff S, Baggio L, Ratineau C, et al. Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY. Mol Cell Biol. 2005;25:4189–99.

    Article  PubMed  CAS  Google Scholar 

  31. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–61.

    Article  PubMed  CAS  Google Scholar 

  32. Murakami N, Hayashida T, Kuroiwa T, et al. Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J Endocrinol. 2002;174(2):283–8.

    Article  PubMed  CAS  Google Scholar 

  33. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.

    Article  PubMed  CAS  Google Scholar 

  34. Cigaina V, Hirschberg AL. Plasma ghrelin and gastric pacing in morbidly obese patients. Metabolism. 2007;56(8):1017–21.

    Article  PubMed  CAS  Google Scholar 

  35. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    Article  PubMed  CAS  Google Scholar 

  36. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  CAS  Google Scholar 

  37. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.

    Article  PubMed  CAS  Google Scholar 

  38. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145(6):2607–12.

    Article  PubMed  CAS  Google Scholar 

  39. Monteleone P, Bencivenga R, Longobardi N, et al. Differential responses of circulating ghrelin to high-fat or high carbohydrate meal in healthy women. J Clin Endocrinol Metab. 2003;88:5510–4.

    Article  PubMed  CAS  Google Scholar 

  40. Overduin J, Frayo RS, Grill HJ, et al. Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology. 2005;146:845–50.

    Article  PubMed  CAS  Google Scholar 

  41. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.

    Article  PubMed  CAS  Google Scholar 

  42. Kumar R, Salehi A, Rehfeld JF, et al. Proghrelin peptides: desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin A study of pancreatic polypeptide secretion from mouse islets. Regul Pept. 2010;164(2–3):65–70.

    Article  PubMed  CAS  Google Scholar 

  43. Gutierrez-Aguilar R, Woods SC. Nutrition and L and K-enteroendocrine cells. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  44. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54:2390–5.

    Article  PubMed  CAS  Google Scholar 

  45. Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology. 2004;145:2687–95.

    Article  PubMed  CAS  Google Scholar 

  46. Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab. 2003;88:4696–701.

    Article  PubMed  CAS  Google Scholar 

  47. Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes. 2006;30:1729–36.

    Article  CAS  Google Scholar 

  48. Rijkelijkhuizen JM, McQuarrie K, Girman CJ, et al. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses. Metabolism. 2010;59(4):502–11.

    Article  PubMed  CAS  Google Scholar 

  49. Creutzfeldt W, Ebert R, Willms B, et al. Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia. 1978;14:15–24.

    Article  PubMed  CAS  Google Scholar 

  50. Salera M, Giacomoni P, Pironi L, et al. Gastric inhibitory polypeptide release after oral glucose: relationship to glucose tolerance, diabetes mellitus and obesity. J Clin Endocrinol Metab. 1982;55:329–36.

    Article  PubMed  CAS  Google Scholar 

  51. Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signalling prevents obesity. Nat Med. 2002;8:738–42.

    Article  PubMed  CAS  Google Scholar 

  52. Holst JJ. On the physiology of GIP and GLP-1. Horm Metab Res. 2004;36:747–54.

    Article  PubMed  CAS  Google Scholar 

  53. Parkes DG, Pittner R, Jodka C, et al. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism. 2001;50(5):583–9.

    Article  PubMed  CAS  Google Scholar 

  54. Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf). 2008;69:173–9.

    Article  CAS  Google Scholar 

  55. Gutzwiller JP, Goke B, Drewe J, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut. 1999;44:81–6.

    Article  PubMed  CAS  Google Scholar 

  56. Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23:304–11.

    Article  PubMed  CAS  Google Scholar 

  57. Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.

    Article  PubMed  CAS  Google Scholar 

  58. Verdich C, Toubro S, Buemann B, et al. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001;25:1206–14.

    Article  PubMed  CAS  Google Scholar 

  59. Burcelin R, Serino M, Cabou C. A role for the gut-to-brain GLP-1-dependent axis in the control of metabolism. Curr Opin Pharmacol. 2009;9:744–52.

    Article  PubMed  CAS  Google Scholar 

  60. Cabou C, Campistron G, Marsollier N, et al. Brain GLP-1 regulates arterial blood flow, heart rate and insulin sensitivity. Diabetes. 2008;57:2577–87.

    Article  PubMed  CAS  Google Scholar 

  61. Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc. 2010;110:571–84.

    Article  PubMed  CAS  Google Scholar 

  62. Goldfine AB, Mun EC, Devine E, et al. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab. 2007;92:4678–85.

    Article  PubMed  CAS  Google Scholar 

  63. Korner J, Bessler M, Inabnet W, et al. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3:597–601.

    Article  PubMed  Google Scholar 

  64. Laferrere B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.

    Article  PubMed  CAS  Google Scholar 

  65. Rodieux F, Giusti V, D’Alessio DA, et al. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring). 2008;16:298–305.

    Article  CAS  Google Scholar 

  66. Reinehr T, Roth CL, Schernthaner GH, et al. Peptide YY and glucagon-like peptide-1 in morbidly obese patients before and after surgically induced weight loss. Obes Surg. 2007;17:1571–7.

    Article  PubMed  Google Scholar 

  67. Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am Surg. 2004;70:1–4.

    PubMed  Google Scholar 

  68. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.

    Article  PubMed  Google Scholar 

  69. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  70. Plum L, Ahmed L, Febres G, et al. Comparison of glucostatic parameters after hypocaloric diet or bariatric surgery and equivalent weight loss. Obesity (Silver Spring). 2011;19(11):2149–57.

    Article  CAS  Google Scholar 

  71. Morinigo R, Vidal J, Lacy AM, et al. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Ann Surg. 2008;247:270–5.

    Article  PubMed  Google Scholar 

  72. Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247:401–7.

    Article  PubMed  Google Scholar 

  73. le Roux CW, Neary NM, Halsey TJ, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005;90(8):4521–4.

    Article  PubMed  Google Scholar 

  74. Sundbom M, Holdstock C, Engström BE, et al. Early changes in ghrelin following Roux-en-Y gastric bypass: influence of vagal nerve functionality? Obes Surg. 2007;17:304–10.

    Article  PubMed  Google Scholar 

  75. Riedl M, Vila G, Maier C, et al. Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab. 2008;93:2307–12.

    Article  PubMed  CAS  Google Scholar 

  76. Faraj M, Jones P, Sniderman AD, et al. Enhanced dietary fat clearance in postobese women. J Lipid Res. 2001;42:571–80.

    PubMed  CAS  Google Scholar 

  77. Molina A, Vendrell J, Gutierrez C, et al. Insulin resistance, leptin and TNF-alpha system in morbidly obese women after gastric bypass. Obes Surg. 2003;13:615–21.

    Article  PubMed  Google Scholar 

  78. Vendrell J, Broch M, Vilarrasa N, et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12:962–71.

    Article  PubMed  CAS  Google Scholar 

  79. Lee WJ, Chen CY, Chong K, et al. Changes in postprandial gut hormones after metabolic surgery: a comparison of gastric bypass and sleeve gastrectomy. Surg Obes Relat Dis. 2011;7(6):683–90.

    Article  PubMed  Google Scholar 

  80. Mingrone G, Nolfe G, Gissey GC, et al. Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia. 2009;52:873–81.

    Article  PubMed  CAS  Google Scholar 

  81. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89:2608–15.

    Article  PubMed  CAS  Google Scholar 

  82. Holdstock C, Zethelius B, Sundbom M, et al. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes (Lond). 2008;32:1640–6.

    Article  CAS  Google Scholar 

  83. Falkén Y, Hellström PM, Holst JJ, et al. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35.

    Article  PubMed  Google Scholar 

  84. Kawada T. Preliminary report: homeostasis model assessment of insulin resistance, an indicator of insulin resistance, is strongly related to serum insulin: practical data presentation and the mathematical basis. Metabolism. 2010;59(7):1044–6.

    Article  PubMed  CAS  Google Scholar 

  85. Barker KB, Palekar NA, Bowers SP, et al. Non-alcoholic steatohepatitis: effect of Roux-en-Y gastric bypass surgery. Am J Gastroenterol. 2004;101:368–73.

    Article  Google Scholar 

  86. Tiikkainen M, Bergholm R, Vehkavaara S, et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 2003;52:701–7.

    Article  PubMed  CAS  Google Scholar 

  87. Werner U, Haschke G, Herling AW, et al. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010;164:58–64.

    Article  PubMed  CAS  Google Scholar 

  88. Buse JB, Drucker DJ, Taylor KL, et al. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care. 2009;33:1255–61.

    Article  Google Scholar 

  89. Ratner R, Nauck M, Kapitza C, et al. Safety and tolerability of high doses of taspoglutide, a once-weekly human GLP-1 analogue, in diabetic patients treated with metformin: a randomized double-blind placebo-controlled study. Diabet Med. 2010;27:556–62.

    Article  PubMed  CAS  Google Scholar 

  90. Rosenstock J, Reusch J, Bush M, et al. Albiglutide Study Group. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care. 2009;32:1880–6.

    Article  PubMed  CAS  Google Scholar 

  91. Beglinger C, Poller B, Arbit E, et al. Pharmacokinetics and pharmacodynamic effects of oral GLP-1 and PYY3-36: a proof-of-concept study in healthy subjects. Clin Pharmacol Ther. 2008;84:468–74.

    Article  PubMed  CAS  Google Scholar 

  92. Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749–57.

    Article  PubMed  CAS  Google Scholar 

  93. Liu YL, Ford HE, Druce MR, et al. Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents. Int J Obes. 2010;1–11.

  94. Asakawa A, Inui A, Kaga T, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut. 2003;52:947–52.

    Article  PubMed  CAS  Google Scholar 

  95. Pittner RA, Moore CX, Bhavsar SP, et al. Effects of PYY[3–36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord. 2004;28:963–71.

    Article  PubMed  CAS  Google Scholar 

  96. Schouten R, Rijs CS, Bouvy ND, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251(2):236–43.

    Article  PubMed  Google Scholar 

  97. Schouten R, Wiryasaputra DC, van Dielen FM, et al. Long-term results of bariatric restrictive procedures: a prospective study. Obes Surg. 2010;20(12):1617–26.

    Article  PubMed  Google Scholar 

  98. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–256.e5.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Michalakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalakis, K., le Roux, C. Gut Hormones and Leptin: Impact on Energy Control and Changes After Bariatric Surgery—What the Future Holds. OBES SURG 22, 1648–1657 (2012). https://doi.org/10.1007/s11695-012-0698-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0698-9

Keywords

Navigation