Skip to main content
Log in

An electrospun polylactic acid film containing silver nanoparticles and encapsulated Thymus daenensis essential oil: release behavior, physico-mechanical and antibacterial studies

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was aimed to fabricate a durable antimicrobial packaging film using electrospun polylactic acid (PLA) nanofibers containing Thymus daenensis essential oil (TDO), TDO-loaded mesoporous silica vesicles (MSVs/TDO), and MSVs/TDO combined with silver nanoparticles (AgNPs). Functional features including mechanical properties, heat resistance, water vapor permeability (WVP), antimicrobial and release behavior of TDO and AgNPs from the nanofibers were assessed. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the presence of MSVs/TDO and embedded AgNPs in nanofibers. Application of MSV/TDO along with AgNPs could reduce significantly the WVP (0.43 ± 0.04 g m−1 Pa−1 s−1) and control the release of the EO from the electrospun PLA films (P < 0.05). Furthermore, the release of AgNPs from PLA nanofibers was increased in the presence of pure TDO (0.0135 ppm after 72 h). The combination of MSVs/TDO and AgNPs had a synergistic antibacterial effect on the tested bacteria both in culture and on ultra-filtered (UF) cheese. The controlled release ability of the EO in MSVs/TDO film resulted in its less antibacterial effect compared to the TDO film in the early times of antimicrobial assessments. The population growth of the inoculated pathogenic bacteria on the packed UF cheese with the films containing MSVs/TDO was controlled due to the long-lasting release of EO, so that the MSVs/TDO + AgNPs film reduced the count of E. coli and S. aureus by 1.56 and 2.97 log CFU g−1 on the 4th storage day, respectively. Thus, the electrospun PLA film containing MSVs/TDO + AgNPs bear a good potential for use in food packaging as a biocompatible packaging with long-term antimicrobial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H.H. in’t, Veld, Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol. 33(1), 1–18 (1996). https://doi.org/10.1016/0168-1605(96)01139-7

    Article  Google Scholar 

  2. R. Coles, D. McDowell, M.J. Kirwan, Food Packaging Technology (CRC Press, Boca Raton, 2003)

    Google Scholar 

  3. A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol 18(2), 84–95 (2007). https://doi.org/10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  4. I.S. Tawakkal, M.J. Cran, J. Miltz, S.W. Bigger, A review of poly (lactic acid)-based materials for antimicrobial packaging. J. Food Sci. 79(8), R1477–R1490 (2014). https://doi.org/10.1111/1750-3841.12534

    Article  CAS  PubMed  Google Scholar 

  5. S. Mihindukulasuriya, L.-T. Lim, Nanotechnology development in food packaging: a review. Trends Food Sci. Technol 40(2), 149–167 (2014). https://doi.org/10.1016/j.tifs.2014.09.009

    Article  CAS  Google Scholar 

  6. C. Zhang, Y. Li, P. Wang, H. Zhang, Electrospinning of nanofibers: potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 19(2), 479–502 (2020). https://doi.org/10.1111/1541-4337.12536

    Article  CAS  PubMed  Google Scholar 

  7. S.M.B. Hashemi, D. Jafarpour, The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Sci. Nutr. 8(7), 3128–3137 (2020). https://doi.org/10.1002/fsn3.1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Sayadi, A. Mojaddar Langroodi, D. Jafarpour, Impact of zein coating impregnated with ginger extract and Pimpinella anisum essential oil on the shelf life of bovine meat packaged in modified atmosphere. J. Food Meas. Charact. 15(6), 5231 (2021). https://doi.org/10.1007/s11694-021-01096-1

    Article  Google Scholar 

  9. M.A. Nassar, A.M. Youssef, Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging. Carbohydr. Polym. 89(1), 269 (2012). https://doi.org/10.1016/j.carbpol.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  10. H. Poortavasoly, M. Montazer, T. Harifi, Simultaneous synthesis of nano silver and activation of polyester producing higher tensile strength aminohydroxylated fiber with antibacterial and hydrophilic properties. RSC Adv. 4(86), 46250 (2014). https://doi.org/10.1039/C4RA04835K

    Article  CAS  Google Scholar 

  11. S. Ataei, P. Azari, A. Hassan, B. Pingguan-Murphy, R. Yahya, F. Muhamad, Essential oils-loaded electrospun biopolymers: A future perspective for active food packaging. Adv. Polym. Technol. 2020, 1 (2020). https://doi.org/10.1155/2020/9040535

    Article  CAS  Google Scholar 

  12. M.M. Zarshenas, L. Krenn, A critical overview on Thymus daenensis Celak.: phytochemical and pharmacological investigations. J. Integr. Med. 13(2), 91–98 (2015). https://doi.org/10.1016/S2095-4964(15)60166-2

    Article  PubMed  Google Scholar 

  13. S. Mansouri, M. Pajohi-Alamoti, N. Aghajani, B. Bazargani‐Gilani, A. Nourian, Stability and antibacterial activity of Thymus daenensis L. essential oil nanoemulsion in mayonnaise. J. Sci. Food Agric. 101(9), 3880 (2021). https://doi.org/10.1002/jsfa.11026

    Article  CAS  PubMed  Google Scholar 

  14. A. Kumar, R. Kanwar, S.K. Mehta, Recent development in essential oil-based nanocarriers for eco-friendly and sustainable agri-food applications: a review. ACS Agric. Sci. Technol. 2(5), 823–837 (2022). https://doi.org/10.1021/acsagscitech.2c00100

    Article  CAS  Google Scholar 

  15. A. Bernardos, T. Marina, P. Žáček, É Pérez-Esteve, R. Martínez-Mañez, M. Lhotka, L. Kouřimská, J. Pulkrábek, P. Klouček, Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. J. Sci. Food Agric. 95(14), 2824 (2015). https://doi.org/10.1002/jsfa.7022

    Article  CAS  PubMed  Google Scholar 

  16. A.D. Erem, G. Ozcan, H. Erem, M. Skrifvars, Antimicrobial activity of poly (L-lactide acid)/silver nanocomposite fibers. Text. Res. J. 83(20), 2111 (2013). https://doi.org/10.1177/0040517513481875

    Article  CAS  Google Scholar 

  17. W. Lu, R. Cui, B. Zhu, Y. Qin, G. Cheng, L. Li, M. Yuan, Influence of clove essential oil immobilized in mesoporous silica nanoparticles on the functional properties of poly (lactic acid) biocomposite food packaging film. J. Mater. Res. Technol. 11, 1152 (2021). https://doi.org/10.1016/j.jmrt.2021.01.098

    Article  CAS  Google Scholar 

  18. F. Farjadian, A. Roointan, S. Mohammadi-Samani, M. Hosseini, Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem. Eng. J. 359, 684–705 (2019). https://doi.org/10.1016/j.cej.2018.11.156

    Article  CAS  Google Scholar 

  19. X. Zhong, F. Gao, H. Wei, H. Zhou, X. Zhou, Functionalization of mesoporous silica as an effective composite carrier for essential oils with improved sustained release behavior and long-term antibacterial performance. Nanotechnol 33(3), 035706 (2021). https://doi.org/10.1088/1361-6528/ac2fe2

    Article  CAS  Google Scholar 

  20. Y. Zhang, Q. Yue, Y. Jiang, W. Luo, A.A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. CrystEngComm 18(23), 4343 (2016). https://doi.org/10.1039/C5CE02592C

    Article  CAS  Google Scholar 

  21. L. Nedorostova, P. Kloucek, L. Kokoska, M. Stolcova, J. Pulkrabek, Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food control 20(2), 157–160 (2009). https://doi.org/10.1016/j.foodcont.2008.03.007

    Article  CAS  Google Scholar 

  22. B. Melendez-Rodriguez, K.J. Figueroa-Lopez, A. Bernardos, R. Martínez-Máñez, L. Cabedo, S. Torres-Giner, J.M. Lagaron, Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials 9(2), 227 (2019). https://doi.org/10.3390/nano9020227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. Zhang, W. Lan, T. Ji, D.E. Sameen, S. Ahmed, W. Qin, Y. Liu, Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging. LWT 135, 110072 (2021). https://doi.org/10.1016/j.lwt.2020.110072

    Article  CAS  Google Scholar 

  24. S. Cai, B. Pourdeyhimi, E.G. Loboa, Industrial-scale fabrication of an osteogenic and antibacterial PLA/silver‐loaded calcium phosphate composite with significantly reduced cytotoxicity. J. Biomed. Mater. Res. B Appl. 107(4), 900 (2019). https://doi.org/10.1002/jbm.b.34185

    Article  CAS  Google Scholar 

  25. Y. Chen, Y. Qiu, W. Chen, Q. Wei, Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. Mater. Sci. Eng. C 109, 110536 (2020). https://doi.org/10.1016/j.msec.2019.110536

    Article  CAS  Google Scholar 

  26. A.G. Pirbalouti, M. Hashemi, F.T. Ghahfarokhi, Essential oil and chemical compositions of wild and cultivated Thymus daenensis celak and Thymus vulgaris L. Ind. Crops Prod. 48, 43–48 (2013). https://doi.org/10.1016/j.indcrop.2013.04.004

    Article  CAS  Google Scholar 

  27. V. Rowshan, A. Bahmanzadegan, M.J. Saharkhiz, Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Ind. Crops Prod. 49, 97–101 (2013). https://doi.org/10.1016/j.indcrop.2013.04.029

    Article  CAS  Google Scholar 

  28. M. Shahriarinour, F. Divsar, Z. Eskandari, Synthesis, characterization, and antibacterial activity of thymol loaded SBA-15 mesoporous silica nanoparticles. Inorg. Nano-Met Chem. 49(6), 182–189 (2019). https://doi.org/10.1080/24701556.2019.1624569

    Article  CAS  Google Scholar 

  29. A. Altan, Z. Aytac, T. Uyar, Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocoll. 81, 48–59 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.028

    Article  CAS  Google Scholar 

  30. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  31. Y. Liu, S. Wang, R. Zhang, W. Lan, W. Qin, Development of poly (lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials 7(7), 194 (2017). https://doi.org/10.3390/nano7070194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R. Scaffaro, F. Lopresti, Processing, structure, property relationships and release kinetics of electrospun PLA/Carvacrol membranes. Eur. Polym. J. 100, 165–171 (2018). https://doi.org/10.1016/j.eurpolymj.2018.01.035

    Article  CAS  Google Scholar 

  33. W. Li, C. Zhang, H. Chi, L. Li, T. Lan, P. Han, H. Chen, Y. Qin, Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules 22(7), 1170 (2017). https://doi.org/10.3390/molecules22071170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Jobdeedamrong, R. Jenjob, D. Crespy, Encapsulation and release of essential oils in functional silica nanocontainers. Langmuir 34(44), 13235 (2018). https://doi.org/10.1021/acs.langmuir.8b01652

    Article  CAS  PubMed  Google Scholar 

  35. S.F. Hosseini, M. Rezaei, M. Zandi, F.F. Ghavi, Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem. 136(3–4), 1490 (2013). https://doi.org/10.1016/j.foodchem.2012.09.081

    Article  CAS  Google Scholar 

  36. X. Liu, J. Jia, S. Duan, X. Zhou, A. Xiang, Z. Lian, F. Ge, Zein/MCM-41 nanocomposite film incorporated with cinnamon essential oil loaded by modified supercritical CO2 impregnation for long-term antibacterial packaging. Pharmaceutics 12(2), 169 (2020). https://doi.org/10.3390/pharmaceutics12020169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. Salmieri, F. Islam, R.A. Khan, F.M. Hossain, H.M. Ibrahim, C. Miao, W.Y. Hamed, M. Lacroix, Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications-part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellul 21(6), 4271 (2014). https://doi.org/10.1007/s10570-014-0406-0

    Article  CAS  Google Scholar 

  38. M. Hassannia-Kolaee, F. Khodaiyan, R. Pourahmad, I. Shahabi-Ghahfarrokhi, Development of ecofriendly bionanocomposite: whey protein isolate/pullulan films with nano-SiO2. Int. J. Biol. Macromol. 86, 139–144 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.032

    Article  CAS  PubMed  Google Scholar 

  39. H.S. Sofi, T. Akram, A.H. Tamboli, A. Majeed, N. Shabir, F.A. Sheikh, Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int. J. Pharm. 569, 118590 (2019). https://doi.org/10.1016/j.ijpharm.2019.118590

    Article  CAS  PubMed  Google Scholar 

  40. S. Ray, R.P. Cooney. Thermal degradation of polymer and polymer composites, in Handbook of Environmental Degradation of Materials (William Andrew Publishing, Norwich, 2018), pp. 185–206

  41. E. Gámez, H. Elizondo-Castillo, J. Tascon, S. García-Salinas, N. Navascues, G. Mendoza, M. Arruebo, S. Irusta, Antibacterial effect of thymol loaded SBA-15 nanorods incorporated in PCL electrospun fibers. Nanomaterials 10(4), 616 (2020). https://doi.org/10.3390/nano10040616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. F.N. Almajhdi, H. Fouad, K.A. Khalil, H.M. Awad, S.H. Mohamed, T. Elsarnagawy, A.M. Albarrag, F.F. Al-Jassir, H.S. Abdo, In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J. Mater. Sci. Mater. Med. 25(4), 1045 (2014). https://doi.org/10.1007/s10856-013-5131-y

    Article  CAS  PubMed  Google Scholar 

  43. X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, X. Jing, Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. Eur. Polym. J. 42(9), 2081 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.032

  44. EFSA Scientific Committee, Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 9(5), 2140 (2011). https://doi.org/10.2903/j.efsa.2011.2140

    Article  CAS  Google Scholar 

  45. T. Min, X. Sun, Z. Yuan, L. Zhou, X. Jiao, J. Zha, Z. Zhu, Y. Wen, Novel antimicrobial packaging film based on porous poly (lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. LWT 135, 110034 (2021). https://doi.org/10.1016/j.lwt.2020.110034

    Article  CAS  Google Scholar 

  46. F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, V. De Feo, Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12), 1451–1474 (2013). https://doi.org/10.3390/ph6121451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R.J. Holmila, S.A. Vance, S.B. King, A.W. Tsang, R. Singh, C.M. Furdui, Silver nanoparticles induce mitochondrial protein oxidation in lung cells impacting cell cycle and proliferation. Antioxidants 8(11), 552 (2019). https://doi.org/10.3390/antiox8110552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Cristani, M. D’Arrigo, G. Mandalari, F. Castelli, M.G. Sarpietro, D. Micieli, Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55(15), 6300 (2007). https://doi.org/10.1021/jf070094x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the Research Deputy of Bu-Ali Sina University, Hamedan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Pajohi-Alamoti.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamian, M., Pajohi-Alamoti, M., Azizian, S. et al. An electrospun polylactic acid film containing silver nanoparticles and encapsulated Thymus daenensis essential oil: release behavior, physico-mechanical and antibacterial studies. Food Measure 17, 3450–3463 (2023). https://doi.org/10.1007/s11694-023-01890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01890-z

Keywords

Navigation