Skip to main content
Log in

Impact of washing crude olive pomace oil with hydrogen-rich water and incorporating hydrogen into extraction solvents on quality attributes and phytochemical content of oil

Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Effects of washing crude olive pomace oil (COPO) with hydrogen-rich water (HRW) on its physicochemical and sensory properties, and phytochemicals were investigated. Acidity and peroxide values of normal water (NW) and HRW-washed COPOs decreased with a highest impact shown for HRW. The improving effects increased with the increases in washing cycle numbers. HRW-washed COPOs showed a decrease in color change and browning index. The phenolics content increased in the HRW-washed COPOs and decreased in the NW- washed COPOs. Incorporation of hydrogen into both methanol and hexane improved the extraction of phenolics (TPC), flavonoids (TFC), and antioxidants (DPPH and ABTS). Hydrogen incorporation into solvents led to a two-fold TPC and TFC increase. Washing COPO with HRW can be proposed as an effective method for improving the quality notes and preserving the nutritional value of oil, while hydrogen incorporation of solvents is recommended for better extracting phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Petrakis, Olive oil extraction, in Olive oil: Chemistry and technology, 2nd (edn). ed. by A.O.C.S. Press (Champaign, 2006), pp.191–223. https://doi.org/10.1016/B978-1-893997-88-2.50013-4

    Chapter  Google Scholar 

  2. C. Alimentarius, “Codex standard for olive oils, and olive pomace oils, CODEX STAN 33-1981. Codex Alimentarius, Roma, Itália.,” 2021

  3. R. Romano et al., Oxidative stability of high oleic sunflower oil during deep-frying process of purple potato Purple Majesty. Heliyon 7(3), e06294 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Sevindirici, 3-Mcpd and Ge risk in refined vegetable oils: structure, formation mechanism, legal regulations and mitigation techniques. Gida J. Food 43, 886–895 (2018). https://doi.org/10.15237/gida.gd18053

    Article  Google Scholar 

  5. T. Yasdag, T. Tekin, A. Tekin. Yaşdağ, Ayçiçek ve pirina yağlarının kızartma stabilitelerinin karşılaştırılması. Gıda 42(2), 105–115 (2017)

    Google Scholar 

  6. F. Holgado, M.V. Ruiz-Méndez, J. Velasco, G. Márquez-Ruiz, Performance of olive-pomace oils in discontinuous and continuous frying. Comparative behavior with sunflower oils and high-oleic sunflower oils. Foods 10(12), 3081 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Cachon, D. Alwazeer, Quality performance assessment of gas injection during juice processing and conventional preservation technologies. Value-Added Ingred. Enrich. Beverages (2019). https://doi.org/10.1016/B978-0-12-816687-1.00014-X

    Article  Google Scholar 

  8. D. Alwazeer, C. Delbeau, C. Divies, R. Cachon, Use of redox potential modification by gas improves microbial quality, color retention, and ascorbic acid stability of pasteurized orange juice. Int. J. Food Microbiol. 89(1), 21–29 (2003). https://doi.org/10.1016/S0168-1605(03)00125-9

    Article  CAS  PubMed  Google Scholar 

  9. D. Alwazeer, B. Örs, K. Tan, Reducing atmosphere packaging as a novel alternative technique for extending shelf life of fresh cheese. J. Food Sci. Technol. 57(8), 3013–3023 (2020). https://doi.org/10.1007/s13197-020-04334-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Alwazeer, B. Örs, Reducing atmosphere drying as a novel drying technique for preserving the sensorial and nutritional notes of foods. J. Food Sci. Technol. 56(8), 3790–3800 (2019). https://doi.org/10.1007/s13197-019-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Alwazeer, N. Özkan, Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life. J. Food Sci. Technol. (2022). https://doi.org/10.1007/s13197-022-05427-y

    Article  PubMed  Google Scholar 

  12. D. Alwazeer, Reducing atmosphere drying as a new technique for the preservation of the color of dried foods. J. Inst. Sci. Technol. 8(4), 125–131 (2018). https://doi.org/10.21597/jist.418232

    Article  Google Scholar 

  13. I. Ohsawa et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007). https://doi.org/10.1038/nm1577

    Article  CAS  PubMed  Google Scholar 

  14. B.M. Buchholz et al., Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am. J. Transplant. 8(10), 2015–2024 (2008). https://doi.org/10.1111/j.1600-6143.2008.02359.x

    Article  CAS  PubMed  Google Scholar 

  15. K. Kawai, D. Takaki, A. Nakatsuka, A. Wada, J. Tamaki, N. Yasunaka, T. Koike, K. Tsuzaki, R. Matsumoto, K. Miyake, Y. Shiraha, H. Morita, M. Makino, H. Yamamoto, D. Kawai, Takaki A, A. Nakatsuka, J. Wada, N. Tamaki, T. Yasunaka, K. Koike, R. Tsuzaki, K. Matsumoto, Y. Miyake, H. Shiraha, M. Morita, H. Makino, K. Yamamoto, Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanyinghepatocarcinogenesis in mice. Hepatology 56(3), 912–921 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. D. Alwazeer, Importance of consideration of oxidoreduction potential as a critical quality parameter in food industries. Food Res. Int. 132, 109108 (2020). https://doi.org/10.1016/j.foodres.2020.109108

    Article  CAS  PubMed  Google Scholar 

  17. M. Köktürk, M.N. Atalar, A. Odunkıran, M. Bulut, D. Alwazeer, Evaluation of the hydrogen-rich water alleviation potential on mercury toxicity in earthworms using ATR-FTIR and LC–ESI–MS/MS spectroscopy. Environ. Sci. Pollut. Res. 29(13), 19642–19656 (2022). https://doi.org/10.1007/s11356-021-17230-x

    Article  CAS  Google Scholar 

  18. L. Fan, H. Chen, J. Liang, D. Chen, Y. Huang, Controllable synthesis of hydrogen bubbles via aeration method for efficient antioxidant process. Appl. Nanosci. 11(3), 833–840 (2021)

    Article  CAS  Google Scholar 

  19. A.A. Lapin, A.A. Kalayda, S.D. Filippov, V.N. Zelenkov, “Biochemical effects of molecular hydrogen in aqueous systems,” in IOP Conference Series: Earth and Environmental Science, 2019, 288(1), p. 12054

  20. M.M. Ceylan, M. Bulut, D. Alwazeer, M. Koyuncu, “Evaluation of the Impact of Hydrogen-Rich Water on the Quality Attribute Notes of Butter,” J. Dairy Res., p. Under revision, 2022

  21. D. Alwazeer, M.M. Ceylan, M. Bulut, M. Koyuncu, “Washing Butter by Hydrogen-Rich Water Reduces The Heavy Metal Accumulation in Final Product,” J. food Saf., p. Under Review, 2022

  22. M. Bulut, Y. Çelebi Sezer, M.M. Ceylan, D. Alwazeer, Hydrogen-rich water can reduce the formation of biogenic amines in butter. Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.132613

    Article  PubMed  Google Scholar 

  23. G. Dadali, E. Demirhan, B. Özbek, Color change kinetics of spinach undergoing microwave drying. Dry. Technol. 25(10), 1713–1723 (2007)

    Article  Google Scholar 

  24. “A.O.C.S. AOCS Official Method Ca 5a-40. Free Fatty Acids in Crude and Refined Fats and Oils. In Official methods and recommended practices of the American Oil Chemists’ Society. AOCS, Champaign,” 2004

  25. “A.O.C.S. AOCS Official Method Cd 8–53. Peroxide value. In Official methods and recommended practices of the American Oil Chemists’ Society (4th ed.). AOCS, Champaign, 1989

  26. M. Ricciutelli et al., Olive oil polyphenols: a quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. J. Chromatogr. A 1481, 53–63 (2017). https://doi.org/10.1016/j.chroma.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  27. J. López et al., Effect of air temperature on drying kinetics, vitamin c, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety óneil. Food Bioprocess. Technol. 3(5), 772–777 (2010). https://doi.org/10.1007/s11947-009-0306-8

    Article  CAS  Google Scholar 

  28. A.C.P. Vital, C. Croge, S.M. Gomes-da-Costa, P.T. Matumoto-Pintro, Effect of addition of Agaricus blazei mushroom residue to milk enriched with Omega-3 on the prevention of lipid oxidation and bioavailability of bioactive compounds after in vitro gastrointestinal digestion. Int. J. Food Sci. Technol. 52(6), 1483–1490 (2017). https://doi.org/10.1111/ijfs.13413

    Article  CAS  Google Scholar 

  29. M.A. Madrau et al., Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 228(3), 441–448 (2009). https://doi.org/10.1007/s00217-008-0951-6

    Article  CAS  Google Scholar 

  30. M. Ozgen and R. Reese, “Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric. J. Agric. doi: 10.1021/jf051960d

  31. F. Pedreschi, K. Kaack, K. Granby, Acrylamide content and color development in fried potato strips. Food Res. Int. 39(1), 40–46 (2006). https://doi.org/10.1016/j.foodres.2005.06.001

    Article  CAS  Google Scholar 

  32. M.M. Ceylan, A. Baştürk, “Thermal oxidation, 3-MCPD and glycidyl esters formation in hazelnut oil enriched with natural extracts during french fries production,” J. Food Meas. Charact., 0123456789, 2022, https://doi.org/10.1007/s11694-022-01592-y

    Article  Google Scholar 

  33. M.I. Minguez-Mosquera, L. Rejano-Navarro, B. Gandul-Rojas, A.H. SanchezGomez, J. Garrido-Fernandez, Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 68(5), 332–336 (1991). https://doi.org/10.1007/BF02657688

    Article  CAS  Google Scholar 

  34. P.K. Nayak, U.M.A. Dash, K. Rayaguru, K.R. Krishnan, Physio-chemical changes during repeated frying of cooked oil: a review. J. Food Biochem. 40(3), 371–390 (2016)

    Article  CAS  Google Scholar 

  35. H. Jaeger, A. Janositz, D. Knorr, “La réaction de Maillard et son contrôle pendant la fabrication des aliments. Le potentiel des nouvelles technologies,” Pathol. Biol. (Paris), 58, no. 3. 207–213, 2010. https://doi.org/10.1016/j.patbio.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  36. S. Li, D. Lu, Y. Zhang, Y. Zhang, Long-term treatment of hydrogen-rich saline abates testicular oxidative stress induced by nicotine in mice. J. Assist. Reprod. Genet. 31(1), 109–114 (2014). https://doi.org/10.1007/s10815-013-0102-2

    Article  PubMed  Google Scholar 

  37. M. Kayahan, Yağ kimyası. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim AŞ Yayınları: METU Press 2008

  38. K.R. Cadwallader, T.K. Singh, Flavours and off-flavours in milk and dairy products. Adv. Dairy Chem. 3, 631–690 (2009). https://doi.org/10.1007/978-0-387-84865-5_14

    Article  Google Scholar 

  39. Y. Vangoori, A. Dakshinamoorthi, S. Kavimani, Prominent pancreatic lipase inhibition and free radical scavenging activity of a Myristica Fragrans Ethanolic Extract in Vitro. Potential role in obesity treatment. Maedica (Buchar) 14(3), 254 (2019)

    Google Scholar 

  40. A. Nonaka, T. Manabe, T. Tobe, Effect of a new synthetic ascorbic acid derivative as a free radical scavenger on the development of acute pancreatitis in mice. Gut 32(5), 528–532 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Huang et al., Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: an in vitro study. Food Chem. 326, 126785 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. Y.N. Sreerama, Y. Takahashi, K. Yamaki, Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. J. Food Sci. 77(9), C927–C933 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. N. Akhlaghi, G. Najafpour-Darzi, Phytochemical analysis, antioxidant activity, and pancreatic lipase inhibitory effect of ethanolic extract of Trigonella foenumgraceum L. leaves. Biocatal. Agric. Biotechnol 32, 101961 (2021)

    Article  CAS  Google Scholar 

  44. D.A. Moreno, N. Ilic, A. Poulev, D.L. Brasaemle, S.K. Fried, I. Raskin, Inhibitory effects of grape seed extract on lipases. Nutrition 19(10), 876–879 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. G.-N. Kim et al., Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/1723042

    Article  PubMed  PubMed Central  Google Scholar 

  46. D. Alwazeer, F.F.-C. Liu, X.Y. Wu, W.T. LeBaron, Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: mechanisms and perspectives. Oxid. Med. Cell. Longev (2021). https://doi.org/10.1155/2021/5513868

    Article  PubMed  PubMed Central  Google Scholar 

  47. H.-D. Belitz, W. Grosch, Food Chemistry (Springer, Berlin, 1999)

    Book  Google Scholar 

  48. P. Alov, I. Tsakovska, I. Pajeva, Computational studies of Free Radical-Scavenging Properties of Phenolic Compounds. Curr. Top. Med. Chem. 15(2), 85–104 (2014). https://doi.org/10.2174/1568026615666141209143702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Murat Ceylan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, M.M., Silgan, M., Elnasanelkasim, M.A. et al. Impact of washing crude olive pomace oil with hydrogen-rich water and incorporating hydrogen into extraction solvents on quality attributes and phytochemical content of oil. Food Measure 17, 2029–2040 (2023). https://doi.org/10.1007/s11694-022-01801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01801-8

Keywords

Navigation