Skip to main content
Log in

Identification of starch with assorted shapes derived from the fleshy root tuber of Phoenix sylvestris: extraction, morphological and techno-functional characterization

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Currently, the starch of edible tubers from underutilized plants has been receiving considerable attention among starch manufacturers for versatile applications because of the abundance, cost-effectiveness, and biodegradability. The present study reports the isolation of a white-coloured crystalline starch of high purity (96.18 g 100 g−1) from the fleshy root tuber of wild palm, Phoenix sylvestris, through water treatment and its characterization by different analytical techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The physicochemical analyses revealed the amylose content of the starch to be 62.39 g 100 g−1. Through XRD probing the crystallinity and nature of starch were determined to be 22.12 ± 0.21% and B-type, respectively. The SEM analysis detected the assorted shapes of starch with a granular size in the range of 1–10 µm. The formation of unique flowery-shaped starch granules due to the complexation with protein through noncovalent interaction was also evident from the SEM image. From the DSC and TGA studies, the gelatinization parameters such as the onset (T0), peak (Tp), complete gelatinization (Tc) temperatures, and enthalpy for the starch isolate were determined as 68.19 ± 0.02 °C, 82.27 ± 1.12 °C, 95.03 ± 0.15 °C, and 11.29 ± 0.01 J g−1, respectively. The increase in enthalpy value of the retrogradation process on longer storage times demonstrated the higher reorganization of starch components. The characteristic temperatures of the retrogradation process were lower than the corresponding gelatinization process temperature. The scavenging of DPPH and ABTS radicals by the candidate starch confirmed its antioxidant properties. The overall studies indicated that the isolated novel starch could ascertain the applications in the production of biodegradable films for food packaging, preparation of syrups with high glucose content, as well as its incorporation into cooked and canned products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis, Molecules 23, 1760 (2018)

    Article  PubMed Central  Google Scholar 

  2. A. Samant, B. Nayak, P.K. Misra, J. Environ. Chem. Eng. 5, 5429–5438 (2017)

    Article  CAS  Google Scholar 

  3. B. Nayak, P.K. Misra, Mater. Chem. Phys. 230, 187–196 (2019)

    Article  CAS  Google Scholar 

  4. B. Nayak, P.K. Misra, Mater. Chem. Phys. 239, 121967 (2020)

    Article  CAS  Google Scholar 

  5. S. Parida, D.K. Sahu, P.K. Misra, Energ Source Part A. 38, 1110–1116 (2016)

    Article  CAS  Google Scholar 

  6. D. Das, S. Panigrahi, P.K. Misra, A. Nayak, Energ Fuel. 22, 1865–1872 (2008)

    Article  CAS  Google Scholar 

  7. R.N. Tharanathan, Crit. Rev. Food Sci. Nutr. 45, 371–384 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Wang, G. Zhang, Food Res. Int. 140, 110009 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. S. Siddiqui, N. Dalal, A. Srivastva, A.K. Pathera, J. Food Meas. 15, 2805–2820 (2021)

    Article  Google Scholar 

  10. S. Wang, C. Chao, J. Cai, B. Niu, L. Copeland, S. Wang, CRFSFS 19, 1056–1079 (2020)

    CAS  Google Scholar 

  11. R.A. Gonzalez-Soto, B. de la Vega, F.J. García-Suarez, E. Agama-Acevedo, L.A. Bello-Pérez, LWT Food Sci. Technol. 44, 2064–2069 (2011)

    Article  CAS  Google Scholar 

  12. Á. Bravo-Núñez, R. Garzón, C.M. Rosell, M. Gómez, Foods 8, 155 (2019)

    Article  PubMed Central  Google Scholar 

  13. N. S. M. Yazid, N. Abdullah, N. Muhammad, H. M. Matias-Peralta, J. Sci. Technol. 10, (2018)

  14. B. Dereje, Int. J. Biol. Macromol. 187, 911–921 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. M. Oves, M. Aslam, M.A. Rauf, S. Qayyum, H.A. Qari, M.S. Khan, I.M. Ismail, Mater. Sci. Eng. C. 89, 429–443 (2018)

    Article  CAS  Google Scholar 

  16. P. Jain, S. Jain, S. Sharma, S. Paliwal, Agri. Nat. Resour. 52, 107–114 (2018)

    Google Scholar 

  17. M. Jonoobi, M. Shafie, Y. Shirmohammadli, A. Ashori, H.Z. Hosseinabadi, T. Mekonnen, J. Renew. Mater. 7, 1055–1075 (2019)

    Article  CAS  Google Scholar 

  18. M. Chandrasekaran, A.H. Bahkali, Saudi J. Biol. Sci. 20, 105–120 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. Singla, A. Singh, S.B. Dhull, P. Kumar, T. Malik, P. Kumar, Int. J. Biol. Macromol. 163, 1283–1290 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. L. Panda, S. K. Jena, S. S. Rath, P. K. Misra, Environ. Sci. Pollut. Res. 1–15 (2020)

  21. A. K. Biswal, P. K. Misra, Mater. Chem. Phys. 123014 (2020)

  22. A.K. Biswal, P.K. Panda, J.M. Yang, P.K. Misra, IET Nanobiotechnol. 14, 654–661 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Meher, D. Das, A.K. Samal, P.K. Misra, Mater. Today: Proceed. 9, 542–550 (2019)

  24. G.F. Nogueira, F.M. Fakhouri, R.A. de Oliveira, Carbohydr. Polym. 186, 64–72 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. J.A.C. Bento, K.C. Ferreira, A.L.M. de Oliveira, L.M. Lião, M. Caliari, M.S.S. Júnior, Int. J. Biol. Macromol. 135, 422–428 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. A.K. Biswal, C. Lenka, P.K. Panda, J.M. Yang, P.K. Misra, LWT Food Sci. Technol. 137, 110459 (2020)

    Article  Google Scholar 

  27. A.K. Biswal, A.K. Samal, M. Tripathy, P.K. Misra, Mater. Today: Proceed. 9, 605–614 (2019)

    CAS  Google Scholar 

  28. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671–675 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C.K. Reddy, F. Luan, B. Xu, Int. J. Biol. Macromol. 105, 354–362 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. M.M.S. Ismaiel, Y.M. El-Ayouty, M. Piercey-Normore, Braz. J. Microb. 47, 298–304 (2016)

    Article  CAS  Google Scholar 

  31. A. Kamboj, R. Gupta, A. Rana, R. Kaur, Europ. J. Biomed. Pharma. Sci. 2, 201–215 (2015)

    CAS  Google Scholar 

  32. O. O. Kunle, Chemical Properties of Starch, BoD–Books on Demand, 35, 1–14 (2019)

  33. Y. Von Fircks, L. Sennerby-Forsse, Tree Physiol. 18, 243–249 (1998)

    Article  Google Scholar 

  34. J. A. C. Bento, M. C. Fidelis, M. A. de Souza Neto, L. M. Lião, M. Caliari, M. S. S. Júnior, Int. J. Biol. Macromol. 145, 332–340 (2020)

  35. M.S.A. Fakir, M. Jannat, M.G. Mostafa, H. Seal, J. Bangladesh Agri. Univ. 10, 217–222 (2012)

    Article  Google Scholar 

  36. O. F. Vilpoux, V. H. Brito, M. P. Cereda, Starches for Food Application, (Academic Press, 2019), pp.103-165

  37. R.K. Tadapaneni, R. Yang, B. Carter, J. Tang, Food Res. Int. 102, 203–212 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. T.H. Mu, M. Zhang, Sweet potato starch (In Sweet Potato, Academic Press, 2019), pp. 27–68

    Book  Google Scholar 

  39. Y. Zhong, Y. Wu, A. Blennow, C. Li, D. Guo, X. Liu, LWT-Food Sci. Technol. 134, 110176 (2020)

  40. E. Kamau, C. Mutungi, J. Kinyuru, S. Imathiu, C. Tanga, H. Affognon, K.K.M. Fiaboe, Food Res. Int. 106, 420–427 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. K. S. Trinh, T. B. Dang, Int. J. Food Sci. 1–7 (2019)

  42. J. Man, J. Cai, C. Cai, H. Huai, C. Wei, Carbohydr. Polym. 89, 571–577 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. P.S. Hornung, R.C.T. Barbi, G.L. Teixeira, S. Avila, F.L.D.A. da Silva, M. Lazzarotto, R.H. Ribani, J. Therm. Anal. Calorim. 134, 2075–2088 (2018)

    Article  CAS  Google Scholar 

  44. J. A. Radley, Starch and its derivatives (3rd ed.), (New York: John Wiley and Sons, 1953) 1, pp. 369–401

  45. M.E. Sharlina, W.A. Yaacob, A.M. Lazim, S. Fazry, S.J. Lim, S. Abdullah, M. Kumaran, Food Chem. 220, 225–232 (2017)

    Article  Google Scholar 

  46. K. Rakholiya, S. Chanda, Asian Pac. J. Trop. Biomed. 2, 680–684 (2012)

    Article  Google Scholar 

  47. S.S. Ajazuddin, Pharmacogn. Res. 2, 318 (2010)

    Article  CAS  Google Scholar 

  48. L. Fu, L. Liu, W. Chen, Q. Wang, X. Lv, J. Wang, X. Zhang, LWT-Food Sci. Technol. 109694 (2020)

  49. I.G. Cordelino, C. Tyl, L. Inamdar, Z. Vickers, A. Marti, B.P. Ismail, LWT-Food Sci. Technol. 99, 1–7 (2019)

    Article  CAS  Google Scholar 

  50. R.S. Policegoudra, S.M. Aradhya, Food Hydrocoll. 22, 513–519 (2008)

    Article  CAS  Google Scholar 

  51. D. Das, U. Dash, A. Nayak, P.K. Misra, Energy Fuels 24, 1260–1268 (2010)

    Article  CAS  Google Scholar 

  52. S.W. Kariuki, J.W. Muthengia, M.K. Erastus, G.M. Leonard, J.M. Marangu, Heliyon 6, 04574 (2020)

    Google Scholar 

  53. I. Cumpstey, Int. Scholarly Res. Notices, 1–27 (2013)

  54. K. Jamir, K. Seshagirirao, Food Hydrocoll. 72, 247–253 (2017)

    Article  CAS  Google Scholar 

  55. R. Kizil, J. Irudayaraj, K. Seetharaman, J. Agri. Food Chem. 50, 3912–3918 (2002)

    Article  CAS  Google Scholar 

  56. F.J. Warren, M.J. Gidley, B.M. Flanagan, Carbohydr. Polym. 139, 35–42 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. K. Dome, E. Podgorbunskikh, A. Bychkov, O. Lomovsky, Polymers 12, 641 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  58. W. Shujun, L. Hongyan, G. Wenyuan, C. Haixia, Y. Jiugao, X. Peigen, Food Chem. 99, 30–37 (2006)

    Article  Google Scholar 

  59. R. Hoover, W.S. Ratnayake, Food Chem. 78, 489–498 (2002)

    Article  CAS  Google Scholar 

  60. Y.I. Cornejo-Ramírez, O. Martínez-Cruz, C.L. Del Toro-Sánchez, F.J. Wong-Corral, J. Borboa-Flores, F.J. Cinco-Moroyoqui, CyTA-J. Food 16, 1003–1017 (2018)

    Article  Google Scholar 

  61. D.S. de Castro, I. dos Santos Moreira, L.M. de Melo Silva, J.P. Lima, W.P. da Silva, J.P. Gomes, R.M.F. de Figueirêdo, Food Res. Int. 124, 181–187 (2019)

    Article  PubMed  Google Scholar 

  62. D. de Souza Fernandes, T.P.R. dos Santos, A.M. Fernandes, M. Leonel, Int. J. Biol. Macromol. 132, 710–721 (2019)

    Article  PubMed  Google Scholar 

  63. E.J. Vernon-Carter, J. Alvarez-Ramirez, L.A. Bello-Perez, C. Hernandez-Jaimes, I. Reyes, Starch-Stärke 72, 1900087 (2020)

    Article  CAS  Google Scholar 

  64. S. Maharana, P.K. Misra, J. Phy. Chem. B 122, 5161–5172 (2018)

    Article  CAS  Google Scholar 

  65. P.K. Misra, J. Meher, S. Maharana, J. Mol. Liq. 224, 900–908 (2016)

    Article  CAS  Google Scholar 

  66. P.K. Misra, U. Dash, S. Maharana, Collods. Surf. Part A Physico. Engg. Aspects 483, 36–44 (2015)

    Article  CAS  Google Scholar 

  67. J. Singh, L. Kaur, H. Singh, Adv. Food. Nutri. Res. 137–179 (2013)

  68. M. Zheng, C. Chao, J. Yu, L. Copeland, S. Wang, S. Wang, J. Agri. Food Chem. 66, 1872–1880 (2018)

    Article  CAS  Google Scholar 

  69. D. Rengadu, A.S. Gerrano, J.J. Mellem, Int. J. Biol. Macromol. 147, 268–275 (2020)

    Article  CAS  PubMed  Google Scholar 

  70. X. Li, W. Chen, Q. Chang, Y. Zhang, B. Zheng, H. Zeng, Int. J. Biol. Macromol. 144, 67–75 (2020)

    Article  CAS  PubMed  Google Scholar 

  71. A.L. Charles, K. Cato, T.C. Huang, Y.H. Chang, J.Y. Ciou, J.S. Chang, H.H. Lin, Food Hydrocoll. 53, 187–191 (2016)

    Article  CAS  Google Scholar 

  72. K. Alvani, X. Qi, R.F. Tester, C.E. Snape, Food Chem. 125, 958–965 (2011)

    Article  CAS  Google Scholar 

  73. O. Patino-Rodriguez, E. Agama-Acevedo, G. Ramos-Lopez, L.A. Bello-Pérez, Food Hydrocoll. 101, 105512 (2020)

    Article  CAS  Google Scholar 

  74. Y. Tian, Y. Li, X. Xu, Z. Jin, Carbohydr. Polym. 84, 1165–1168 (2011)

    Article  CAS  Google Scholar 

  75. B. Jankovic, Carbohydr. Polym. 95, 621–629 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. F. Zhu, Food Hydrocoll. 63, 332–348 (2017)

    Article  CAS  Google Scholar 

  77. S. Srichuwong, T.C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Carbohydr. Polym. 62, 25–34 (2005)

    Article  CAS  Google Scholar 

  78. D. Chandanasree, K. Gul, C.S. Riar, Food Hydrocoll. 52, 175–182 (2016)

    Article  CAS  Google Scholar 

  79. S.A. Oyeyinka, A.A. Adeloye, O.O. Olaomo, E. Kayitesi, Food Biosci. 33, 100485 (2020)

    Article  CAS  Google Scholar 

  80. P.K. Misra, H.P. Mishra, U. Dash, A.B. Mandal, J. Colloid Interface Sci. 333, 590–598 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. T. G. Hughes, Doctoral dissertation, Memorial University of Newfoundland (2013)

  82. F. Shahidi, P. Ambigaipalan, J. Funct. Foods 18, 820–897 (2015)

    Article  CAS  Google Scholar 

  83. R.Z. Chen, L. Tan, C.G. Jin, J. Lu, L. Tian, Q.Q. Chang, K. Wang, Ind. Crops Prod. 77, 434–443 (2015)

    Article  CAS  Google Scholar 

  84. D. L. Nelson, A. L. Lehninger, M. M. Cox, (2008)

  85. R.C.T. Barbi, G.L. Teixeira, P.S. Hornung, S. Ávila, R. Hoffmann-Ribani, Food Hydrocoll. 77, 646–658 (2018)

    Article  Google Scholar 

  86. P.S. Hornung, K. Masisi, L.N. Malunga, T. Beta, R.H. Ribani, Polym. Bull. 75, 4735–4752 (2018)

    Article  CAS  Google Scholar 

  87. R. Mukhtar, A. Shah, N. Noor, A. Gani, I.A. Wani, B.A. Ashwar, F.A. Masoodi, Int. J. Biol. Macromol. 104, 1313–1320 (2017)

    Article  CAS  PubMed  Google Scholar 

  88. B.R. Ramadoss, M.P. Gangola, S. Agasimani, S. Jaiswal, T. Venkatesan, G.R. Sundaram, R.N. Chibbar, J. Food Sci. Technol. 56, 391–400 (2019)

    Article  CAS  PubMed  Google Scholar 

  89. S. Ren, Starch-Stärke 69, 1600367 (2017)

    Article  Google Scholar 

  90. D. Stawski, Food Chem. 110, 777–781 (2008)

    Article  CAS  Google Scholar 

  91. N.W. Cheetham, L. Tao, Carbohydr. Polym. 36, 277–284 (1998)

    Article  CAS  Google Scholar 

  92. B. P. N. Phiarais, E. K. Arendt, In Gluten-free cereal products and beverages. (Academic Press, 2008), pp. 347–372

  93. Y. Sang, S. Bean, P.A. Seib, J. Pedersen, Y.C. Shi, J. Agric. Food Chem. 56(15), 6680–6685 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial supports of the UGC (No.F.540/14/DRS/2013 (SAP-I)) and DST (SR/FST/CSII-021/2012(G)) to the School of Chemistry are gratefully acknowledged. Support of TRIFED, Govt. of India (TFD/HO/R&D/2016-17/20/ Vol-3/4279), New Delhi to PKM and senior research fellowship to AKB is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramila Kumari Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, A.K., Mishra, S., Bhavya, M.B. et al. Identification of starch with assorted shapes derived from the fleshy root tuber of Phoenix sylvestris: extraction, morphological and techno-functional characterization. Food Measure 16, 1688–1701 (2022). https://doi.org/10.1007/s11694-021-01261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01261-6

Keywords

Navigation