Skip to main content
Log in

Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, sunflower oil was encapsulated using pea protein isolate (PP) in combination with different polysaccharides (sodium alginate, inulin, maltodextrin or pectin) using the spray-drying technique. The addition of polysaccharides resulted in increase of viscosity and average droplet size of emulsion, water activity, moisture content and mean size of microparticles. Oxidative stability of powders during long-terms storage (25 °C for up to 300 days) was investigated using Rancimat accelerated oxidation test. Microparticles prepared with addition of inulin, maltodextrin and pectin showed the higher gain in oxidative stability (∆IP) compared to those obtained with PP alone, which confirmed the formation of glassy coating and decrease of oxygen diffusion in wall material. For example, at t = 100 days, ∆IP of microparticles prepared with PP alone and in combination with pectin was 3.5 and 11.2 h respectively. Microparticles, formed by employing proposed experimental conditions could be potentially used for the development of functional foods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.C. Borsonelo, J.C.F. Galduróz, The role of polyunsaturated fatty acids (PUFAs) in development, aging and substance abuse disorders: Review and propositions. Prostaglandins Leukot. Essent. Fatty Acids 78(4), 237–245 (2008). https://doi.org/10.1016/j.plefa.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  2. S.A. Fioramonti, E.M. Stepanic, A.M. Tibaldo, Y.L. Pavón, L.G. Santiago, Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Res. Int. 119, 931–940 (2019). https://doi.org/10.1016/j.foodres.2018.10.079

    Article  CAS  PubMed  Google Scholar 

  3. C. Gouel, H. Guimbard, Nutrition transition and the structure of global food demand. Am. J. Agr. Econ. 101(2), 383–403 (2019). https://doi.org/10.1093/ajae/aay030

    Article  Google Scholar 

  4. S. Huerta-Yépez, A.B. Tirado-Rodriguez, O. Hankinson, Role of diets rich in omega-3 and omega-6 in the development of cancer. Bol. Med. Hosp. Infant. Mex. 73(6), 446–456 (2016). https://doi.org/10.1016/j.bmhimx.2016.11.001

    Article  PubMed  Google Scholar 

  5. M. Singh, Essential fatty acids, DHA and human brain. Indian J. Pediatr. 72(3), 239–242 (2005). https://doi.org/10.1007/BF02859265

    Article  PubMed  Google Scholar 

  6. L. Tao, Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci. (2015). https://doi.org/10.17140/AFTNSOJ-1-123

    Article  Google Scholar 

  7. E. Arab-Tehrany, M. Jacquot, C. Gaiani, M. Imran, S. Desobry, M. Linder, Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol. 25(1), 24–33 (2012). https://doi.org/10.1016/j.tifs.2011.12.002

    Article  CAS  Google Scholar 

  8. M. Pattnaik, H.N. Mishra, Amelioration of the stability of polyunsaturated fatty acids and bioactive enriched vegetable oil: blending, encapsulation, and its application. Crit. Rev. Food Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2021.1899127

    Article  PubMed  Google Scholar 

  9. S.M. Jafari, A. Rashidinejad, Spray Drying Encapsulation of Bioactive Materials, 1st edn. (CRC Press, New York, 2021)

    Book  Google Scholar 

  10. A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res. Int. 40(9), 1107–1121 (2007). https://doi.org/10.1016/j.foodres.2007.07.004

    Article  CAS  Google Scholar 

  11. M.I. Ré, Microencapsulation by spray drying. Drying Technol. 16(6), 1195–1236 (1998). https://doi.org/10.1080/07373939808917460

    Article  Google Scholar 

  12. M. Geranpour, E. Assadpour, S.M. Jafari, Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends Food Sci Technol 102, 71–90 (2020). https://doi.org/10.1016/j.tifs.2020.05.028

    Article  CAS  Google Scholar 

  13. S.M.T. Gharibzahedi, S. George, R. Greiner, B.N. Estevinho, M.J. Frutos Fernández, D.J. McClements, S. Roohinejad, New trends in the microencapsulation of functional fatty acid-rich oils using transglutaminase catalyzed crosslinking. Compreh. Rev. Food Sci. Food Saf. 17(2), 274–289 (2018). https://doi.org/10.1111/1541-4337.12324

    Article  CAS  Google Scholar 

  14. L. Le Priol, A. Dagmey, S. Morandat, K. Saleh, K. El Kirat, A. Nesterenko, Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids 95, 105–115 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.026

    Article  CAS  Google Scholar 

  15. A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind. Crops Prod. 42, 469–479 (2013). https://doi.org/10.1016/j.indcrop.2012.06.035

    Article  CAS  Google Scholar 

  16. A. Nesterenko, I. Alric, F. Violleau, F. Silvestre, V. Durrieu, The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids 41, 95–102 (2014). https://doi.org/10.1016/j.foodhyd.2014.03.017

    Article  CAS  Google Scholar 

  17. J. QuinteroQuiroz, J. Rojas, G. Ciro, Vegetable proteins as potential encapsulation agents: a review. Food Res. 2, 208–220 (2018)

    Article  Google Scholar 

  18. Y. Xu, G. Wang, X. Wang, J. Yu, J. Wang, Z. Zhang, R. Li, Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate. Food Sci. Biotechnol. 27(5), 1293–1299 (2018). https://doi.org/10.1007/s10068-018-0361-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Nesterenko, I. Alric, F. Violleau, F. Silvestre, V. Durrieu, A new way of valorizing biomaterials: the use of sunflower protein for α-tocopherol microencapsulation. Food Res. Int. 53(1), 115–124 (2013). https://doi.org/10.1016/j.foodres.2013.04.020

    Article  CAS  Google Scholar 

  20. Y. Lan, B. Chen, J. Rao, Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids 80, 245–253 (2018). https://doi.org/10.1016/j.foodhyd.2018.02.021

    Article  CAS  Google Scholar 

  21. L. Sha, Y.L. Xiong, Plant protein-based alternatives of reconstructed meat: science, technology, and challenges. Trends Food Sci. Technol. 102, 51–61 (2020). https://doi.org/10.1016/j.tifs.2020.05.022

    Article  CAS  Google Scholar 

  22. S. Phongthai, W. Homthawornchoo, S. Rawdkuen, Preparation, properties and application of rice bran protein: a review. Int. Food Res. J. 24, 25–34 (2017)

    CAS  Google Scholar 

  23. E. Dickinson, Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 4(5), 932–942 (2008). https://doi.org/10.1039/B718319D

    Article  CAS  PubMed  Google Scholar 

  24. A.P.T.R. Pierucci, L.R. Andrade, M. Farina, C. Pedrosa, M.H.M. Rocha-Leão, Comparison of α-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative. J. Microencapsul. 24(3), 201–213 (2007). https://doi.org/10.1080/02652040701281167

    Article  CAS  PubMed  Google Scholar 

  25. E.M. Vélez-Erazo, I.L. Silva, T. Comunian, L.E. Kurozawa, M.D. Hubinger, Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. J. Food Sci. Technol. (2020). https://doi.org/10.1007/s13197-020-04834-3

    Article  PubMed  Google Scholar 

  26. M.A. Kurek, A. Pratap-Singh, Plant-based (hemp, pea and rice) protein-maltodextrin combinations as wall material for spray-drying microencapsulation of hempseed (Cannabis sativa) oil. Foods (2020). https://doi.org/10.3390/foods9111707

  27. A. Gharsallaoui, R. Saurel, O. Chambin, E. Cases, A. Voilley, P. Cayot, Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chem. 122(2), 447–454 (2010). https://doi.org/10.1016/j.foodchem.2009.04.017

    Article  CAS  Google Scholar 

  28. L. Aberkane, G. Roudaut, R. Saurel, Encapsulation and oxidative stability of PUFA-rich oil microencapsulated by spray drying using pea protein and pectin. Food Bioprocess Technol. 7(5), 1505–1517 (2014). https://doi.org/10.1007/s11947-013-1202-9

    Article  CAS  Google Scholar 

  29. P. Moser, S. Ferreira, V.R. Nicoletti, Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food Bioprod Process 117, 183–193 (2019). https://doi.org/10.1016/j.fbp.2019.07.009

    Article  CAS  Google Scholar 

  30. P. Moser, V.R. Nicoletti, S. Drusch, M. Brückner-Gühmann, Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocolloids 107, 105929 (2020). https://doi.org/10.1016/j.foodhyd.2020.105929

    Article  CAS  Google Scholar 

  31. A. González, M.L. Martínez, A.J. Paredes, A.E. León, P.D. Ribotta, Study of the preparation process and variation of wall components in chia (Salvia hispanica L.) oil microencapsulation. Powder Technol. 301, 868–875 (2016). https://doi.org/10.1016/j.powtec.2016.07.026

    Article  CAS  Google Scholar 

  32. D. Zhou, Y. Pan, J. Ye, J. Jia, J. Ma, F. Ge, Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT Food Sci. Technol. 83, 292–297 (2017). https://doi.org/10.1016/j.lwt.2017.05.029

    Article  CAS  Google Scholar 

  33. X.-H. Zhao, C.-H. Tang, Spray-drying microencapsulation of CoQ10 in olive oil for enhanced water dispersion, stability and bioaccessibility: influence of type of emulsifiers and/or wall materials. Food Hydrocolloids 61, 20–30 (2016). https://doi.org/10.1016/j.foodhyd.2016.04.045

    Article  CAS  Google Scholar 

  34. S. Murali, A. Kar, A. Patel, J. Kumar, D. Mohapatra, S.K. Dash, Encapsulation of rice bran oil in tapioca starch-soya protein isolate complex using spray drying. Indian J. Agric. Sci. 86, 984–91 (2016)

    Google Scholar 

  35. Y.P. Timilsena, R. Adhikari, C.J. Barrow, B. Adhikari, Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. Int. J. Biol. Macromol. 91, 347–357 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.058

    Article  CAS  PubMed  Google Scholar 

  36. P. Kaushik, K. Dowling, S. McKnight, C.J. Barrow, B. Adhikari, Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 86, 1–8 (2016). https://doi.org/10.1016/j.foodres.2016.05.015

    Article  CAS  Google Scholar 

  37. Y.M. Chong, S.K. Chang, W.C.M. Sia, H.S. Yim, Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 12, 18–25 (2015). https://doi.org/10.1016/j.fbio.2015.07.002

    Article  CAS  Google Scholar 

  38. P. Cunniff, C. Association of Official Analytical, Official methods of analysis of AOAC international (Association of Official Analytical Chemists, Washington, DC, 1995)

    Google Scholar 

  39. L.C. Garcia, R.V. Tonon, M.D. Hubinger, Effect of homogenization pressure and oil load on the emulsion properties and the oil retention of microencapsulated basil essential oil (Ocimum basilicum L.). Drying Technol. 30(13), 1413–1421 (2012). https://doi.org/10.1080/07373937.2012.685998

    Article  CAS  Google Scholar 

  40. N. Eghbal, P. Degraeve, N. Oulahal, M.S. Yarmand, M.E. Mousavi, A. Gharsallaoui, Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocolloids 69, 132–140 (2017). https://doi.org/10.1016/j.foodhyd.2017.01.033

    Article  CAS  Google Scholar 

  41. Y. Lan, J.-B. Ohm, B. Chen, J. Rao, Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids 101, 105556 (2020). https://doi.org/10.1016/j.foodhyd.2019.105556

    Article  CAS  Google Scholar 

  42. M. Klein, A. Aserin, P.B. Ishai, N. Garti, Interactions between whey protein isolate and gum Arabic. Colloids Surf. B 79(2), 377–383 (2010). https://doi.org/10.1016/j.colsurfb.2010.04.021

    Article  CAS  Google Scholar 

  43. M.U. Beer, P.J. Wood, J. Weisz, A simple and rapid method for evaluation of Mark–Houwink–Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography: application to guar galactomannan. Carbohydr. Polym. 39(4), 377–380 (1999). https://doi.org/10.1016/S0144-8617(99)00017-X

    Article  CAS  Google Scholar 

  44. S. Takeungwongtrakul, S. Benjakul, A. H-kittikun, Wall materials and the presence of antioxidants influence encapsulation efficiency and oxidative stability of micro-encapsulated shrimp oil. Eur. J. Lipid Sci. Technol. 117(4), 450–459 (2015). https://doi.org/10.1002/ejlt.201400235

    Article  CAS  Google Scholar 

  45. C. Turchiuli, M.T. Jimenez Munguia, M. Hernandez Sanchez, H. Cortes Ferre, E. Dumoulin, Use of different supports for oil encapsulation in powder by spray drying. Powder Technol. 255, 103–108 (2014). https://doi.org/10.1016/j.powtec.2013.08.026

    Article  CAS  Google Scholar 

  46. A.Y. Guadarrama-Lezama, L. Dorantes-Alvarez, M.E. Jaramillo-Flores, C. Pérez-Alonso, K. Niranjan, G.F. Gutiérrez-López, L. Alamilla-Beltrán, Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. J. Food Eng. 112(1), 29–37 (2012). https://doi.org/10.1016/j.jfoodeng.2012.03.032

    Article  CAS  Google Scholar 

  47. G.A. Reineccius, The spray drying of food flavors. Drying Technol. 22(6), 1289–1324 (2004). https://doi.org/10.1081/DRT-120038731

    Article  Google Scholar 

  48. F.D.M. Ramos, V. Silveira Júnior, A.S. Prata, Impact of vacuum spray drying on encapsulation of fish oil: oxidative stability and encapsulation efficiency. Food Res. Int. 143, 110283 (2021). https://doi.org/10.1016/j.foodres.2021.110283

    Article  CAS  PubMed  Google Scholar 

  49. T.P. Labuza, H. Tsuyuki, M. Karel, Kinetics of linoleate oxidation in model systems. J. Am. Oil. Chem. Soc. 46(8), 409–416 (1969). https://doi.org/10.1007/BF02545625

    Article  CAS  PubMed  Google Scholar 

  50. V. Lavelli, B. Zanoni, A. Zaniboni, Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chem. 104(4), 1705–1711 (2007). https://doi.org/10.1016/j.foodchem.2007.03.033

    Article  CAS  Google Scholar 

  51. S.Y. Quek, N.K. Chok, P. Swedlund, The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 46(5), 386–392 (2007). https://doi.org/10.1016/j.cep.2006.06.020

    Article  CAS  Google Scholar 

  52. A.P.T.R. Pierucci, L.R. Andrade, E.B. Baptista, N.M. Volpato, M.H.M. Rocha-Leão, New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. J. Microencapsul. 23(6), 654–662 (2006). https://doi.org/10.1080/02652040600776523

    Article  CAS  PubMed  Google Scholar 

  53. L. Di Giorgio, P.R. Salgado, A.N. Mauri, Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids 87, 891–901 (2019). https://doi.org/10.1016/j.foodhyd.2018.09.024

    Article  CAS  Google Scholar 

  54. C.-H. Tang, X.-R. Li, Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Res. Int. 52(1), 419–428 (2013). https://doi.org/10.1016/j.foodres.2012.09.010

    Article  CAS  Google Scholar 

  55. A. Gharsallaoui, R. Saurel, O. Chambin, A. Voilley, Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying. Food Bioprocess Technol. 5(6), 2211–2221 (2012). https://doi.org/10.1007/s11947-010-0497-z

    Article  CAS  Google Scholar 

  56. H.R. Sharif, H.D. Goff, H. Majeed, M. Shamoon, F. Liu, J. Nsor-Atindana, J. Haider, R. Liang, F. Zhong, Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids 73, 274–283 (2017). https://doi.org/10.1016/j.foodhyd.2017.07.002

    Article  CAS  Google Scholar 

  57. R. Farhoosh, S.-Z. Hoseini-Yazdi, Evolution of oxidative values during kinetic studies on olive oil oxidation in the rancimat test. J. Am. Oil. Chem. Soc. 91(2), 281–293 (2014). https://doi.org/10.1007/s11746-013-2368-z

    Article  CAS  Google Scholar 

  58. R. Farhoosh, R. Niazmand, M. Rezaei, M. Sarabi, Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 110(6), 587–592 (2008). https://doi.org/10.1002/ejlt.200800004

    Article  CAS  Google Scholar 

  59. V. Orlien, A.B. Andersen, T. Sinkko, L.H. Skibsted, Hydroperoxide formation in rapeseed oil encapsulated in a glassy food model as influenced by hydrophilic and lipophilic radicals. Food Chem. 68(2), 191–199 (2000). https://doi.org/10.1016/S0308-8146(99)00177-6

    Article  CAS  Google Scholar 

  60. M. Jayasundera, B. Adhikari, P. Aldred, A. Ghandi, Surface modification of spray dried food and emulsion powders with surface-active proteins: a review. J. Food Eng. 93(3), 266–277 (2009). https://doi.org/10.1016/j.jfoodeng.2009.01.036

    Article  CAS  Google Scholar 

  61. J.-H. Ahn, Y.-P. Kim, E.-M. Seo, Y.-K. Choi, H.-S. Kim, Antioxidant effect of natural plant extracts on the microencapsulated high oleic sunflower oil. J. Food Eng. 84(2), 327–334 (2008). https://doi.org/10.1016/j.jfoodeng.2007.05.029

    Article  CAS  Google Scholar 

  62. P. Cazón, G. Velazquez, J.A. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68, 136–148 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  63. H.C.F. Carneiro, R.V. Tonon, C.R.F. Grosso, M.D. Hubinger, Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 115(4), 443–451 (2013). https://doi.org/10.1016/j.jfoodeng.2012.03.033

    Article  CAS  Google Scholar 

  64. S. Drusch, K. Rätzke, M.Q. Shaikh, Y. Serfert, H. Steckel, M. Scampicchio, I. Voigt, K. Schwarz, S. Mannino, Differences in free volume elements of the carrier matrix affect the stability of microencapsulated lipophilic food ingredients. Food Biophys. 4(1), 42–48 (2009). https://doi.org/10.1007/s11483-008-9100-9

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Nesterenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Priol, L., Gmur, J., Dagmey, A. et al. Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage. Food Measure 16, 1483–1493 (2022). https://doi.org/10.1007/s11694-021-01254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01254-5

Keywords

Navigation