Skip to main content
Log in

Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Pineapple processing waste (PPW) majorly includes peel, core, crown and pomace, which has the potential to be used as an ingredient in food, pharmaceuticals and nutraceutical industries. Present study characterizes the different portions of pineapple waste to determine the phytochemical and techno-functional properties as well as volatile compounds. Crown has the highest phenolic content (41.34 mg GAE/g dry matter) followed by pomace, peel and core. The obtained antioxidant capacity was maximum in pomace (23.55%) and was found to be least in core. Crown consists of the utmost level of mineral (34.696 g/kg dry matter) and all the pineapple waste portions indicated highest content of potassium. Though, peel was found to have higher protein content (6.05%), pomace comprises of wider range of both essential (52.46%) (proline, tyrosine, alanine and glutamic acid) and non-essential amino acids (47.54%) (histidine, methionine, lysine, leucine, phenylalanine and isoleucine) in almost equal proportions. Flash GC based e-nose analysis confirmed the presence of distinguish pineapple volatile compounds like, esters (phenylethyl acetate and ethyl nonanoate), aldehydes (decanal, dodecanal and 2,4-decadienal (E,E)) and ketones (undecan-2-one, rheosmin, benzophenone and 4-undecanolide) in PPW. PPW consists of many valuable components which presents an interesting scope for their application. Hence, future studies could make the use of these wastes as probiotic substrate, biopolymer development and in xylooligosaccharides production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.S. Sengar, A. Rawson, M. Muthiah, S.K. Kalakandan, Ultrason. Sonochem. (2020). https://doi.org/10.1016/j.ultsonch.2019.104812

    Article  PubMed  Google Scholar 

  2. C. Bin Wei, S.H. Liu, Y.G. Liu, L.L. Lv, W.X. Yang, G.M. Sun, Molecules 16, 5104 (2011). https://doi.org/10.3390/molecules16065104

    Article  CAS  Google Scholar 

  3. A. Choonut, M. Saejong, K. Sangkharak, Energy Procedia 52, 242 (2014). https://doi.org/10.1016/j.egypro.2014.07.075

    Article  CAS  Google Scholar 

  4. S. Ketnawa, P. Chaiwut, S. Rawdkuen, Food Bioprod. Process. 90, 385 (2012). https://doi.org/10.1016/j.fbp.2011.12.006

    Article  CAS  Google Scholar 

  5. Y.-L. Huang, Y.-H. Tsai, C.-J. Chow, Nutr. Res. 34, 346 (2014). https://doi.org/10.1016/j.nutres.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  6. C.Y. Cheok, N. Mohd Adzahan, R. Abdul Rahman, N.H. Zainal Abedin, N. Hussain, R. Sulaiman, G.H. Chong, Crit. Rev. Food Sci. Nutr. 58, 335 (2018). https://doi.org/10.1080/10408398.2016.1176009

    Article  PubMed  Google Scholar 

  7. M.P. Riya, K.A. Antu, T. Vinu, K.C. Chandrakanth, K.S. Anilkumar, K.G. Raghu, J. Sci. Food Agric. 94, 943 (2014). https://doi.org/10.1002/jsfa.6340

    Article  CAS  PubMed  Google Scholar 

  8. P.K. Sadh, S. Duhan, J.S. Duhan, Bioresour. Bioprocess. 5, 1 (2018). https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  9. S. Ketnawa, P. Chaiwut, S. Rawdkuen, Food Sci. Technol. Int. 17, 395 (2011). https://doi.org/10.1177/1082013210387817

    Article  CAS  PubMed  Google Scholar 

  10. M.M. Selani, S.G.C. Brazaca, C.T. dos Santos Dias, W.S. Ratnayake, R.A. Flores, A. Bianchini, Food Chem. 163, 23 (2014). https://doi.org/10.1016/j.foodchem.2014.04.076

    Article  CAS  PubMed  Google Scholar 

  11. L. Sepúlveda, A. Romaní, C.N. Aguilar, J. Teixeira, Innov. Food Sci. Emerg. Technol. 47, 38 (2018). https://doi.org/10.1016/j.ifset.2018.01.012

    Article  CAS  Google Scholar 

  12. L. Meena, A.S. Sengar, R. Neog, C.K. Sunil, J. Food Sci. Technol. (2021). https://doi.org/10.1007/s13197-021-05271-6

    Article  PubMed  Google Scholar 

  13. AOAC, Association of Official Analytical Chemists, Official Methods of Analysis, 21st edn. (AOAC International, Arlington, 1990)

  14. S. Khushbu, C.K. Sunil, D.V. Chidanand, R. Jaganmohan, J. Food Process Eng. 43, e13237 (2020). https://doi.org/10.1111/jfpe.13237

    Article  Google Scholar 

  15. A. Rawson, B.K. Tiwari, A. Patras, N. Brunton, C. Brennan, P.J. Cullen, C. O’Donnell, Food Res. Int. 44, 1168 (2011). https://doi.org/10.1016/j.foodres.2010.07.005

    Article  CAS  Google Scholar 

  16. D.P. Leão, A.S. Franca, L.S. Oliveira, R. Bastos, M.A. Coimbra, Food Chem. 225, 146 (2017). https://doi.org/10.1016/j.foodchem.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  17. M. Gu, H. Fang, Y. Gao, T. Su, Y. Niu, L. Yu, Food Hydrocoll. 99, 105321 (2020). https://doi.org/10.1016/j.foodhyd.2019.105321

    Article  CAS  Google Scholar 

  18. P. Lebrun, F. Krier, J. Mantanus, H. Grohganz, M. Yang, E. Rozet, B. Boulanger, B. Evrard, J. Rantanen, P. Hubert, Eur. J. Pharm. Biopharm. 80, 226 (2012). https://doi.org/10.1016/j.ejpb.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  19. V.S. Sharanagat, R. Suhag, P. Anand, G. Deswal, R. Kumar, A. Chaudhary, L. Singh, O. Singh Kushwah, S. Mani, Y. Kumar, P.K. Nema, J. Cereal Sci. 85, 111 (2019). https://doi.org/10.1016/j.jcs.2018.11.013

    Article  CAS  Google Scholar 

  20. S. Sethi, A. Joshi, B. Arora, A. Bhowmik, R.R. Sharma, P. Kumar, Eur. Food Res. Technol. 246, 591 (2020). https://doi.org/10.1007/s00217-020-03432-z

    Article  CAS  Google Scholar 

  21. Shimadzu, Application News No. L458, LAAN-A-LC-E235, 1st edn. (Shimadzu corporation, 2014)

  22. J. Song, Q. Chen, J. Bi, X. Meng, X. Wu, Y. Qiao, Y. Lyu, Food Chem. 331, 127201 (2020)

    Article  CAS  Google Scholar 

  23. R. Martínez, P. Torres, M.A. Meneses, J.G. Figueroa, J.A. Pérez-Álvarez, M. Viuda-Martos, Food Chem. 135, 1520 (2012). https://doi.org/10.1016/j.foodchem.2012.05.057

    Article  CAS  PubMed  Google Scholar 

  24. D.R. Morais, E.M. Rotta, S.C. Sargi, E.G. Bonafe, R.M. Suzuki, N.E. Souza, M. Matsushita, J.V. Visentainer, J. Braz. Chem. Soc. 28, 308 (2016). https://doi.org/10.5935/0103-5053.20160178

    Article  CAS  Google Scholar 

  25. M. Saifullah, Y.A. Yusof, N.L. Chin, M.G. Aziz, Powder Technol. 301, 396 (2016). https://doi.org/10.1016/j.powtec.2016.06.035

    Article  CAS  Google Scholar 

  26. S.A. Binti Yahya, Y. Yusof, Adv. Mater. Res. (Trans Tech Publ, Switzerland, 2013), pp. 430–434

    Google Scholar 

  27. S. Banerjee, A.F. Patti, V. Ranganathan, A. Arora, Food Bioprod. Process. 117, 38 (2019)

    Article  CAS  Google Scholar 

  28. E.A. Ferreira, H.E. Siqueira, E.V.V. Boas, V.S. Hermes, A.D.O. Rios, Rev. Bras. Frutic. 38, e146 (2016)

    Google Scholar 

  29. C. Bonazzi, E. Dumoulin, Mod. Dry. Technol. 3, 1 (2011)

    CAS  Google Scholar 

  30. E. Korbel, E.-H. Attal, J. Grabulos, E. Lluberas, N. Durand, G. Morel, T. Goli, P. Brat, Eur. Food Res. Technol. 237, 39 (2013). https://doi.org/10.1007/s00217-013-2026-6

    Article  CAS  Google Scholar 

  31. S.S. Singh, B.M. Ghodki, T.K. Goswami, J. Food Meas. Charact. 12, 1686 (2018). https://doi.org/10.1007/s11694-018-9784-6

    Article  Google Scholar 

  32. J. Fitzpatrick, T. Iqbal, C. Delaney, T. Twomey, M. Keogh, J. Food Eng. 64, 435 (2004). https://doi.org/10.1016/j.jfoodeng.2003.11.011

    Article  Google Scholar 

  33. O. Omueti, B. Otegbayo, O. Jaiyeola, O. Afolabi, Electron. J. Environ. Agric. Food Chem. 8, 563–573 (2009)

    CAS  Google Scholar 

  34. M.L. Sudha, Purchase flour and breads and their fortification in health and disease prevention (Elsevier, Amsterdam, 2011), pp. 395–405

    Book  Google Scholar 

  35. T. Li, P. Shen, W. Liu, C. Liu, R. Liang, N. Yan, J. Chen, Int. J. Food Prop. 17, 1805 (2014). https://doi.org/10.1080/10942912.2012.732168

    Article  CAS  Google Scholar 

  36. J.A. Larrauri, P. Rupérez, F. Saura Calixto, J. Agric. Food Chem. 45, 4028 (1997). https://doi.org/10.1021/jf970450j

    Article  CAS  Google Scholar 

  37. M.A. Hossain, S.M.M. Rahman, Food Res. Int. 44, 672 (2011). https://doi.org/10.1016/j.foodres.2010.11.036

    Article  CAS  Google Scholar 

  38. N.M. Shofian, A.A. Hamid, A. Osman, N. Saari, F. Anwar, M.S. Pak, Dek, M.R. Hairuddin, Int. J. Mol. Sci. 12, 4678 (2011). https://doi.org/10.3390/ijms12074678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Neri, M. Faieta, C. Di Mattia, G. Sacchetti, D. Mastrocola, P. Pittia, Foods 9, 1886 (2020). https://doi.org/10.3390/foods9121886

    Article  CAS  PubMed Central  Google Scholar 

  40. M. Alothman, R. Bhat, A.A. Karim, Food Chem. 115, 785 (2009). https://doi.org/10.1016/j.foodchem.2008.12.005

    Article  CAS  Google Scholar 

  41. L.M.R. da Silva, E.A.T. de Figueiredo, N.M.P.S. Ricardo, I.G.P. Vieira, R.W. de Figueiredo, I.M. Brasil, C.L. Gomes, Food Chem. 143, 398 (2014). https://doi.org/10.1016/j.foodchem.2013.08.001

    Article  CAS  Google Scholar 

  42. N. Martins, I.C.F.R. Ferreira, Trends Food Sci. Technol. 62, 33 (2017). https://doi.org/10.1016/j.tifs.2017.01.014

    Article  CAS  Google Scholar 

  43. V. Jf. Ayala-Zavala, C. Vega-Vega, H. Rosas-Domínguez, J.A. Palafox-Carlos, M.W. Villa-Rodriguez, J.E. Siddiqui, Dávila-Aviña, G.A. González-Aguilar, Food Res. Int. 44, 1866 (2011). https://doi.org/10.1016/j.foodres.2011.02.021

    Article  CAS  Google Scholar 

  44. V. Bondet, W. Brand-Williams, C. Berset, LWT—Food Sci. Technol. 30, 609 (1997). https://doi.org/10.1006/fstl.1997.0240

    Article  CAS  Google Scholar 

  45. C. Li, P. Sun, H. Yu, N. Zhang, J. Wang, RSC Adv. 7, 1869 (2017). https://doi.org/10.1039/C6RA26134E

    Article  CAS  Google Scholar 

  46. W. Van den Ende, D. Peshev, Crop improvement under adverse condition (Springer, Berlin, 2013), pp. 285–307

    Book  Google Scholar 

  47. T.B.N. Brito, A.P.A. Pereira, G.M. Pastore, R.F.A. Moreira, M.S.L. Ferreira, A.E.C. Fai, LWT 124, 109028 (2020). https://doi.org/10.1016/j.lwt.2020.109028

    Article  CAS  Google Scholar 

  48. G. de Matuoka e Chiocchetti, E.A. De Nadai Fernandes, M.A. Bacchi, R.A. Pazim, S.R.V. Sarriés, T.M. Tomé, J. Radioanal. Nucl. Chem. 297, 399 (2013). https://doi.org/10.1007/s10967-012-2392-8

    Article  CAS  Google Scholar 

  49. N.E. Njoku, C.N. Ubbaonu, S.O. Alagbaoso, C.N. Eluchie, M.C. Umelo, Food Sci. Nutr. 3, 252 (2015). https://doi.org/10.1002/fsn3.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J.A. Hartsel, J. Eades, B. Hickory, A. Makriyannis, Nutraceuticals (Elsevier, Amsterdam, 2016), pp. 735–754

    Book  Google Scholar 

  51. A. Pant, S.K. Saikia, V. Shukla, J. Asthana, B.A. Akhoon, R. Pandey, Exp. Gerontol. 57, 81 (2014). https://doi.org/10.1016/j.exger.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  52. A. Marchese, I.E. Orhan, M. Daglia, R. Barbieri, A. Di Lorenzo, S.F. Nabavi, O. Gortzi, M. Izadi, S.M. Nabavi, Food Chem. 210, 402 (2016). https://doi.org/10.1016/j.foodchem.2016.04.111

    Article  CAS  PubMed  Google Scholar 

  53. W. Chen, A.M. Viljoen, South African J. Bot. 76, 643 (2010). https://doi.org/10.1016/j.sajb.2010.05.008

    Article  CAS  Google Scholar 

  54. E. Gralla, Toxicol. Appl. Pharmacol. 15, 604 (1969). https://doi.org/10.1016/0041-008X(69)90062-3

    Article  CAS  PubMed  Google Scholar 

  55. A.C. Aprotosoaie, I.-I. Costache, A. Miron, Drug discovery from mother nature (Springer, Cham, 2016), pp. 247–267

    Book  Google Scholar 

  56. G.F. Mohamed, M.S. Shaheen, S.K.H. Khalil, A.M.S. Hussein, M.M. Kamil, Nat. Sci. 9, 21 (2011)

    Google Scholar 

  57. V. Adiani, S. Gupta, P.S. Variyar, Sci. Rep. 10, 6203 (2020). https://doi.org/10.1038/s41598-020-62895-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. N.A. Rahmat, A.A. Ali, N. Salmiati, M.S. Hussain, R.A. Muhamad, Kristanti, T. Hadibarata, Water, Air, Soil Pollut. 227, 105 (2016). https://doi.org/10.1007/s11270-016-2807-1

    Article  CAS  Google Scholar 

  59. R.M. Braga, T.S. Queiroga, G.Q. Calixto, H.N. Almeida, D.M.A. Melo, M.A.F. Melo, J.C.O. Freitas, F.D.S. Curbelo, Environ. Sci. Pollut. Res. 22, 18987 (2015). https://doi.org/10.1007/s11356-015-5082-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ministry of Food Processing Industries, Government of India for funding our work (Q-11/10/2020-R&D).

Author information

Authors and Affiliations

Authors

Contributions

ASS: investigation, validation, writing - original draft. CKS: visualisation, conceptualization, writing—review & editing, funding acquisition, supervision. AR: writing—review & editing. NV: writing—review & editing.

Corresponding author

Correspondence to C. K. Sunil.

Ethics declarations

Conflict of interest

All the authors enlisted declare that there are no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengar, A.S., Sunil, C.K., Rawson, A. et al. Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW). Food Measure 16, 1146–1158 (2022). https://doi.org/10.1007/s11694-021-01243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01243-8

Keywords

Navigation