Skip to main content
Log in

A CdSe/ZnS core/shell competitive quantum dot-based fluorescence-linked immunosorbent assay for the sensitive and accurate detection of aflatoxin B1 in corn sample

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Aflatoxin B1 (AFB1), as the main metabolite, found in aflatoxin contaminated food is highly toxic and strictly controlled in many countries. Aiming to construct a simplified, highly sensitive, and accurate quantitative detection platform of AFB1 in ordinary conditions, a one-step competitive quantum dot-labeled immunosorbent assay (cQLISA) was developed using biocompatible CdSe/ZnS core/shell quantum dots (QDs). The quantitative detection of AFB1 can be achieved by adding food sample and QD-AFB1 antibody simultaneously, with an analytical range between 1 and 40 ng/mL. The half maximal inhibitory concentration (IC50) of this method is 542 pg/mL and the limit of detection (LOD) is 56 pg/mL for standard samples, demonstrating a twofold improvement in sensitivity compared with that of the commercial enzyme-linked immunosorbent assay (ELISA) test kit. The recovery rates of negative corn spike-in samples range from 87.01 to114.7% (CV < 15%). A strong correlation was found between cQLISA and commercialized reference platform using real contaminated corns (R2 = 0.9916). The current method demonstrating a shorter operation time due to reduced steps, and a higher accuracy and consistency. The cQLISA showed great potential for convenient, accurate, and sensitive quantitative detection of batch analytes in food safety monitoring in ordinary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Bhatnagar-Mathur, S. Sunkara, M. Bhatnagar-Panwar, F. Waliyar, K.K. Sharma, Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 234, 119–132 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. W.K. Min, K.I. Na, J.H. Yoon, Y.J. Heo, D. Lee, S.G. Kim, J.H. Seo, Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1. Food Chem. 209, 312–317 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. S.H. Henry, F.X. Bosch, T.C. Troxell, P.M. Bolger, Reducing liver cancer-global control of aflatoxin. Science 286, 2453–2454 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. M. Asadi, Separation and quantification of aflatoxins in grains using modified dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. J. Food Meas. Charact. 14, 925–930 (2020)

    Article  Google Scholar 

  5. M. Chen, X. He, Y. Pang, F. Shen, Y. Fang, Q. Hu, Laser induced fluorescence spectroscopy for detection of aflatoxin B1 contamination in peanut oil. J. Food Meas. Charact. 15, 2231–2239 (2021)

    Article  Google Scholar 

  6. E. Reiter, J. Zentek, E. Razzazi, Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed. Mol. Nutr. Food Res. 53, 508–524 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. X. Xu, X. Liu, Y. Li, Y. Ying, A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens. Bioelectron. 47, 361–367 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. N.A. Lee, S. Wang, R.D. Allan, I.R. Kennedy, Development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. J. Agric. Food Chem. 52, 2746–2755 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. J. Stroka, R.V. Otterdijkm, E. Anklam, Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatography A 904, 251–256 (2000)

    Article  CAS  Google Scholar 

  10. H.M. Liu, A.X. Lu, H.L. Fu, B.R. Li, M.H. Yang, J.H. Wang, Y.X. Luan, Affinity capture of aflatoxin B1 and B2 by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC. Microchim. Acta 185, 326 (2018)

    Article  Google Scholar 

  11. B.F. Huang, Z. Han, Z.X. Cai, Y.J. Wu, Y.P. Ren, Simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in peanuts and their derivative products by ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 662, 62–68 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Z.W. Zhang, X.F. Hu, Q. Zhang, P.W. Li, Determination for multiple mycotoxins in agricultural products using HPLC–MS/MS via a multiple antibody immunoaffinity column. J. Chromatography B 1021, 145–152 (2016)

    Article  CAS  Google Scholar 

  13. R. Grinyte, J. Barroso, M. Möller, L. Saa, V. Pavlov, Microbead QD-ELISA: microbead ELISA using biocatalytic formation of quantum dots for ultra high sensitive optical and electrochemical detection. ACS Appl. Mater. Interface 8, 29252–29260 (2016)

    Article  CAS  Google Scholar 

  14. M. Tudorache, C. Bala, Sensitive aflatoxin B1 determination using a magnetic particles-based enzyme-linked immunosorbent assay. Sensors 8, 7571–7580 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Gnaim, O. Green, D. Shabat, The emergence of aqueous chemiluminescence: new promising class of phenoxy 1,2-dioxetane luminophores. Chem. Commun. 54, 2073–2085 (2018)

    Article  CAS  Google Scholar 

  16. Y. Lin, Q. Zhou, D. Tang, R. Niessner, D. Knopp, Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal. Chem. 89, 5637–5645 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Y.N. Shao, H. Duan, G.L. Liang, Y.K. Leng, W.H. Lai, Y.H. Xiong, Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Anal. Chim. Acta 1025, 163–171 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. R.L. Wu, S. Zhou, T. Chen, J.J. Li, H.B. Shen, Y.J. Chai, L.S. Li, Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 1008, 1–7 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. J.X. Chen, F. Xua, H.Y. Jiang, Y.L. Hou, Q.X. Rao, P.J. Guo, S.Y. Ding, A novel quantum dot-based fluoroimmunoassay method for detection of enrofloxacin residue in chicken muscle tissue. Food Chem. 113, 1197–1201 (2009)

    Article  CAS  Google Scholar 

  20. L. Trapiella-Alfonso, J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosens. Bioelectron. 26, 4753–4759 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. C. Martín-Sánchez, J.A. Barreda-Argüeso, S. Seibt, P. Mulvaney, F. Rodríguez, Effects of hydrostatic pressure on the surface plasmon resonance of gold nanocrystals. ACS Nano 13, 498–504 (2019)

    Article  PubMed  Google Scholar 

  22. Q. Wu, Y. Sun, D. Zhang, S. Li, Y. Zhang, P.Y. Ma, Y. Yu, X.H. Wang, Q. Da, D.Q. Song, Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens. Bioelectron. 96, 288–293 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. U. Maqbool, M. Ahmad, H. Anwar, M.M. Iqbal, Determination of aflatoxin B1 in poultry feed and its components employing enzyme-linked immunosorbent assay (ELISA). Toxicol Environ. Chem. Rev. 86, 213–218 (2004)

    Article  Google Scholar 

  24. M. Oplatowska-Stachowiak, N. Sajic, Y. Xu, S.A. Haughey, M.H. Mooney, Y.Y. Gong, R. Verheijen, C.T. Elliott, Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control 63, 239–245 (2016)

    Article  CAS  Google Scholar 

  25. A. Kolosova, W. Shim, Z. Yang, S. Eremin, D. Chung, Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal. Bioanal. Chem. 384, 286–294 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Q. Sun, G. Li, Q. Deng, J. Liu, G. Shi, Development and application of a highly sensitive ELISA kit for aflatoxin B1. Environ. Chem. 34, 1845–1853 (2015)

    CAS  Google Scholar 

  27. N.V. Beloglazova, E.S. Speranskaya, A. Wu, Z. Wang, M. Sanders, V.V. Goftman, D. Zhang, I.Y. Goryacheva, S. De Saeger, Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens. Bioelectron. 62, 59–65 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. T. Madalina, B. Camelia, Sensitive aflatoxin B1 determination using a magnetic particles-based enzyme-linked immunosorbent assay. Sensors 8, 7571–7580 (2008)

    Article  Google Scholar 

  29. N. Hildebrandt, Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano 5, 5286–5290 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. X. Liu, Y. Luo, Surface modifications technology of quantum dots based biosensors and their medical applications. Chinese J. Anal. Chem. 42, 1061–1069 (2014)

    Article  CAS  Google Scholar 

  31. Y. Luo, B. Zhang, T.L. Jiang, D.Y. Zhou, J.F. Huang, W.L. Fu, Sensitive and rapid quantification of C-reactive protein using quantum dot-labeled microplate immunoassay. J. Transl. Med. 10, 24 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.H. Zhou, H.B. Shen, Y. Guo, L. Xu, J.Z. Niu, Z.J. Zhang, Z.L. Du, J.M. Chen, L.S. Li, A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability. J. Coll. Inter. Sci. 244, 279–285 (2010)

    Article  Google Scholar 

  33. N.V. Beloglazova, L.Y. Goryacheva, R. Niessner, D. Knopp, A comparison of horseradish peroxidase, gold nanoparticles and quantum dots as labels in non-instrumental gel-based immunoassay. Microchim Acta. 175, 361–367 (2011)

    Article  CAS  Google Scholar 

  34. Y.B. Lv, R.L. Wu, K.R. Feng, J.J. Li, Q. Mao, H. Yang, H.B. Shen, X.D. Chai, L.S. Li, Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J. Nanobiotech. 15, 35 (2017)

    Article  Google Scholar 

  35. E.Q. Song, M.Q. Yu, Y.Y. Wang, W.H. Hu, D. Cheng, M.T. Swihart, Y. Song, Multicolor quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 72, 320–325 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. H.B. Shen, H.Z. Wang, Z.J. Tang, J.Z. Niu, S.Y. Lou, Z.L. Du, L.S. Li, High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm 11, 1733–1738 (2009)

    Article  CAS  Google Scholar 

  37. C.H. Zhou, H. Yuan, H.B. Shen, Y. Guo, X.M. Li, D. Liu, L. Xu, L. Ma, L.S. Li, Synthesis of size-tunable photoluminescent aqueous CdSe/ZnS microspheres via a phase transfer method with amphiphilic oligomer and their application for detection of HCG antigen. J. Mater. Chem. 21, 7393–7400 (2011)

    Article  CAS  Google Scholar 

  38. Y.B. Lv, F.F. Wang, N. Li, R.L. Wu, J.J. Li, H.B. Shen, L.S. Li, F. Guo, Development of dual quantum dots-based fluorescence-linked immunosorbent assay for simultaneous detection on inflammation biomarkers. Sens. Actuator B 301, 127118 (2019)

    Article  CAS  Google Scholar 

  39. Y.B. Lv, Y.C. Yuan, N. Hu, N. Jin, D.D. Xu, R.L. Wu, H.B. Shen, O. Chen, L.S. Li, Thick-shell CdSe/ZnS/CdZnS/ZnS core/shell quantum dots for quantitative immunoassays. ACS Appl. Nano Mater. 4, 2855–2865 (2021)

    Article  CAS  Google Scholar 

  40. X. Zhang, C. Zhou, S. Zang, H. Shen, P. Dai, X. Zhang, L.S. Li, Layer-by-layer assembly of stable aqueous quantum dots for luminescent planar plate. ACS Appl. Mater. Interfaces 7, 14770–14777 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. D. Guan, P. Li, Q. Zhang, W. Zhang, D. Zhang, J. Jiang, An ultra-sensitive monoclonal antibody-based competitive enzyme immunoassay for aflatoxin M1 in milk and infant milk products. Food Chem. 125, 1359–1364 (2011)

    Article  CAS  Google Scholar 

  42. A.K. Singh, T.K. Dhiman, G.B.V.S. Lakshmi, P.R. Solanki, Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry 137, 107684 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. Z.J. Guo, L. Lv, C.B. Cui, Y. Wang, S. Ji, J.Q. Fang, M. Yuan, H.S. Yu, Detection of aflatoxin B1 with a new label-free fluorescent aptasensor based on exonuclease I and SYBR Gold. Anal. Methods 12, 2928 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. L. Guo, Y. Shao, H. Duan, W. Ma, Y. Leng, X. Huang, Y.H. Xiong, Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce. Anal. Chem. 91, 4727–4734 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Zhang, Y. Li, P. Li, Q. Zhang, W. Zhang, X. Hu, X. Ding, Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts. Food Chem. 146, 314–319 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. H. Ma, J. Sun, Y. Zhang, S. Xia, Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B1 in wheat. Biochem. Eng. J. 115, 38–46 (2016)

    Article  CAS  Google Scholar 

  47. S. Zhang, Y. Shen, G. Shen, S. Wang, G. Shen, R. Yu, Electrochemical immunosensor based on Pd-Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Anal. Biochem. 494, 10–15 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the research project of National Natural Science Foundation of China (Grant Nos. 81902158 and 21671058), the Science and Technology Department of Henan Province (Grant No. 192102310043), and SZU Top Ranking Project (Grant No. 86000000210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruili Wu or Yujuan Chai.

Ethics declarations

Conflict of interest

Yanbing Lv, Yifan Yang, Ruili Wu, Yanxia Xu, Jinjie Li, Ning Li, Huaibin Shen, Yujuan Chai, and Lin Song Li declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1869 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yang, Y., Wu, R. et al. A CdSe/ZnS core/shell competitive quantum dot-based fluorescence-linked immunosorbent assay for the sensitive and accurate detection of aflatoxin B1 in corn sample. Food Measure 16, 857–866 (2022). https://doi.org/10.1007/s11694-021-01223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01223-y

Keywords

Navigation