Skip to main content

Advertisement

Log in

Effect of polypropylene packaging containing nano-hydroxyapatite and modified atmosphere on the physicochemical and microbial properties of cherry tomatoes

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The physicochemical and microbiological characteristics of cherry tomatoes, Red Takta and Gold Takta varieties were investigated in the current study. The effect of packaging pretreatments including polypropylene under Normal Atmosphere, polypropylene under Modified Atmosphere, polypropylene containing nano-hydroxyapatite (3%) accompanied with Modified Atmosphere during cold storage (4 ± 1 °C) were studied. Titratable acidity, pH, antioxidant activity, total phenol, ascorbic acid, carotenoids, lycopene, firmness and, color on 1, 4, 8, 12 and 16 days and microbiological population on 5, 10, and 15 days were determined. A completely randomized design in a factorial experiment was applied to analyze the data. Results illustrated that pH, titratable acidity, total soluble solids (P ≤ 0.01) and total phenol content, vitamin C, lycopene, microbial population have shown better performance in the polypropylene containing nano-hydroxyapatite under modified atmospheric conditions (P ≤ 0.05). Our findings revealed that using polypropylene containing nano-hydroxyapatite accompanied with modified atmosphere as a promising approach has maintained the physicochemical and microbial characteristics of cherry tomato during the storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.S. Choi, S.H. Park, S.R. Choi, J.S. Kim, H.H. Chun, The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packag. Shelf Life 3, 19–30 (2015)

    Google Scholar 

  2. L.-F. Wang, J.-W. Rhim, Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films. Appl. Clay Sci. 150, 9 (2017)

    Google Scholar 

  3. S. Paidari, S.A. Ibrahim, Potential application of gold nanoparticles in food packaging: a mini review. Gold Bull. 54, 31–36 (2021)

    Google Scholar 

  4. S. Paidari, M. Goli, E. Anari, N. Haghdoust, Evaluation the effects of nanosilver composites synthesized using sol-gel method on inoculated Vibrio parahaemolyticus to pink shrimp. Acta Sci. Nutr. Health 3(2), 47–51 (2019)

    Google Scholar 

  5. C. Fagundes, K. Moraes, M.B. Pérez-Gago, L. Palou, M. Maraschin, A. Monteiro, Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 109, 73–81 (2015)

    Google Scholar 

  6. S. Paidari, H. Ahari, The effects of nanosilver and nanoclay nanocomposites on shrimp (Penaeus semisulcatus) samples inoculated to food pathogens. J. Food Meas. Charact. 2, 12 (2021). https://doi.org/10.1007/s11694-021-00905-x

    Article  Google Scholar 

  7. A. Anvar, S. Haghighat Kajavi, H. Ahari, A. Sharifan, A. Motallebi, S. Kakoolaki, S. Paidari, Evaluation of the antibacterial effects of Ag-Tio2 nanoparticles and optimization of its migration to sturgeon caviar (Beluga). Iran. J. Fish. Sci. 18(4), 945 (2019)

    Google Scholar 

  8. N. Kumar, P. Kaur, K. Devgan, A.K. Attkan, Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio-nanocomposite and conventional plastic films. J. Food Process. Preserv. 44(4), e14379 (2020)

    CAS  Google Scholar 

  9. S. Paidari, N. Zamindar, R. Tahergorabi, M. Kargar, S. Ezzati, S.H. Musavi, Edible coating and films as promising packaging: a mini review. J. Food Meas. Charact. 2021, 1–10 (2021)

    Google Scholar 

  10. X. Yun, Y. Wang, M. Li, Y. Jin, Y. Han, T. Dong, Application of permselective poly (ε-caprolactone) film for equilibrium-modified atmosphere packaging of strawberry in cold storage. J. Food Process. Preserv. 41(6), e13247 (2017)

    Google Scholar 

  11. M. Jouki, N. Khazaei, The effect of modified atmosphere packaging and calcium chloride dripping on the quality and shelf life of Kurdistan strawberries. J. Food Process. Technol. 3(10), 20 (2012)

    Google Scholar 

  12. M. Jouki, N. Khazaei, Effects of low-dose γ-irradiation and modified atmosphere packaging on shelf-life and quality characteristics of saffron (Crocus Sativus Linn) in Iran. Food Sci. Biotechnol. 22(3), 687 (2013)

    CAS  Google Scholar 

  13. R. Waghmare, U. Annapure, Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biol. Technol. 85, 147 (2013)

    CAS  Google Scholar 

  14. D. Mousavian, A.M. Nafchi, L. Nouri, A. Abedinia, Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. J. Food Meas. Charact. 15(1), 883 (2021)

    Google Scholar 

  15. D. Mousavian, A. Mohammadi Nafchi, L. Nouri, Effect of active packaging based on polyethylene/propylene films containing thymol on the quality attributes and shelf life of season salad. Food Sci. Technol. 18(116), 85–98 (2021)

    Google Scholar 

  16. M. Gil, M. Conesa, F. Artes, Quality changes in fresh cut tomato as affected by modified atmosphere packaging. Postharvest Biol. Technol. 25(2), 199 (2002)

    CAS  Google Scholar 

  17. Z. Luo, Y. Wang, L. Jiang, X. Xu, Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam. LWT-Food Sci. Technol. 60(2), 1155 (2015)

    CAS  Google Scholar 

  18. A. Boonsiriwit, Y. Xiao, J. Joung, M. Kim, S. Singh, Y.S. Lee, Alkaline halloysite nanotubes/low density polyethylene nanocomposite films with increased ethylene absorption capacity: applications in cherry tomato packaging. Food Packag. Shelf Life 25, 100533 (2020)

    Google Scholar 

  19. O.T. Kamil, S. El-Hefnawy, R. Alashkar, M. Gad, The impact of nano chitosan and nano silicon coatings on the quality of canino apricot fruits during cold storage. Zagazig J. Agric. Res. 46(6), 2215 (2019)

    Google Scholar 

  20. M. Liu, B. Guo, M. Du, X. Cai, D. Jia, Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45), 455703 (2007)

    Google Scholar 

  21. R.T. De Silva, P. Pasbakhsh, S.M. Lee, A.Y. Kit, ZnO deposited/encapsulated halloysite–poly (lactic acid)(PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl. Clay Sci. 111, 10–20 (2015)

    Google Scholar 

  22. Q. Hu, Y. Fang, Y. Yang, N. Ma, L. Zhao, Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res. Int. 44(6), 1589 (2011)

    CAS  Google Scholar 

  23. H. Ismail, P. Pasbakhsh, M.A. Fauzi, A.A. Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 27(7), 841 (2008)

    CAS  Google Scholar 

  24. R. Tabatabaekolor, A. Ebrahimian, S. Hashemi, Investigation on the effect of temperature, packaging material and modified atmosphere on the quality of tomato. J. Food Sci. Technol. (2008-8787) 13(51), 5155 (2016)

    Google Scholar 

  25. P. Kaewklin, U. Siripatrawan, A. Suwanagul, Y.S. Lee, Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int. J. Biol. Macromol. 112, 523 (2018)

    CAS  PubMed  Google Scholar 

  26. L. Wang, S. Shao, M.P. Madebo, Y. Hou, Y. Zheng, P. Jin, Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem. 315, 126295 (2020)

    CAS  PubMed  Google Scholar 

  27. H. Li, F. Li, L. Wang, J. Sheng, Z. Xin, L. Zhao, H. Xiao, Y. Zheng, Q. Hu, Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. Var. inermis (Bunge) Rehd). Food Chem. 114(2), 547 (2009)

    CAS  Google Scholar 

  28. R. Gholami, E. Ahmadi, S. Ahmadi, Investigating the effect of chitosan, nanopackaging, and modified atmosphere packaging on physical, chemical, and mechanical properties of button mushroom during storage. Food Sci. Nutr. 8(1), 224 (2020)

    CAS  PubMed  Google Scholar 

  29. Z. Ghorbani, N. Zamindar, S. Baghersad, S. Paidari, S.M. Jafari, L. Khazdooz, Evaluation of quality attributes of grated carrot packaged within polypropylene-clay nanocomposites. J. Food Meas. Charact. 2021, 1–12 (2021)

    Google Scholar 

  30. F. Tayyari, J. Khazaei, P. Rajaei, M. Jouki, Effects of modified atmosphere packaging systems, low temperature and storage time on the quality of fresh minimally processed pomegranate arils. Carpath. J. Food Sci. Technol. 9(1), 16–26 (2017)

    CAS  Google Scholar 

  31. V. Srilaong, Y. Tatsumi, Changes in respiratory and antioxidative parameters in cucumber fruit (Cucumis sativus L.) stored under high and low oxygen concentrations. J. Jpn. Soc. Hortic. Sci. 72(6), 525 (2003)

    CAS  Google Scholar 

  32. M. Tigist, T.S. Workneh, K. Woldetsadik, Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3), 477 (2013)

    CAS  PubMed  Google Scholar 

  33. R. Chen, J. Wu, M. Tsai, M. Liu, Effects of storage and thermal treatment on the antioxidant activity of tomato fruits (2000)

  34. B. Tajeddin, F. Azadshahraki, Z. Rafiee Darsangi, The Effect of modified atmosphere packaging on the shelf-life of greenhouse-grown tomato. J. Food Biosci. Technol. 10(2), 75–90 (2020)

    Google Scholar 

  35. A. Dadashpour, M. Rahemi, M. Jouki, Effect of modified atmosphere packaging on persimmon fruit (cv. Karaj) Physical, chemical and mechanical properties. Agro FOOD Ind. Hi Technol. 25, 214 (2014)

    Google Scholar 

  36. Z. Nafiseh, N. Samira, P. Saeed, G. Mohammad, A. Hajar, Evaluationhe shelf life of minimally processed lettuce packed in modified atmosphere packaging treated with calcium lactate and heat shock, cysteine and ascorbic acid and sodium hypochlorite. J. Food Meas. Charact. 2021, 1–8 (2021)

    Google Scholar 

  37. M. Jouki, N. Khazaei, Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packag. Shelf Life 1(1), 49–55 (2014)

    Google Scholar 

  38. A. Milani, M. Jouki, M. Rabbani, Production and characterization of freeze-dried banana slices pretreated with ascorbic acid and quince seed mucilage: physical and functional properties. Food Sci. Nutr. 8(7), 3768 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. H.-J. Ahn, J.-H. Kim, J.-K. Kim, D.-H. Kim, H.-S. Yook, M.-W. Byun, Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.). Food Chem. 89(4), 589 (2005)

    CAS  Google Scholar 

  40. A. Patras, N. Brunton, S. Da Pieve, F. Butler, G. Downey, Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innov. Food Sci. Emerg. Technol. 10(1), 16–22 (2009)

    CAS  Google Scholar 

  41. M. Abd-Elhady, Effect of citric acid, calcium lactate and low temperature prefreezing treatment on the quality of frozen strawberry. Ann. Agric. Sci. 59(1), 69–75 (2014)

    Google Scholar 

  42. A. Banerjee, S. Penna, P.S. Variyar, Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage. Food Chem. 183, 265 (2015)

    CAS  PubMed  Google Scholar 

  43. A. Emamifar, M. Kadivar, M. Shahedi, S. Soleimanian-Zad, Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emerg. Technol. 11(4), 742 (2010)

    CAS  Google Scholar 

  44. T.A. Anyasi, C.O. Aworh, A.I. Jideani, Effect of packaging and chemical treatment on storage life and physicochemical attributes of tomato (Lycopersicon esculentum Mill cv. Roma). Afr. J. Biotechnol. 15(35), 1913 (2016)

    CAS  Google Scholar 

  45. L. Pinto, A. Palma, M. Cefola, B. Pace, S. D’Aquino, C. Carboni, F. Baruzzi, Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag. Shelf Life 26, 100573 (2020)

    Google Scholar 

  46. F.M. Yang, H.M. Li, F. Li, Z.H. Xin, L.Y. Zhao, Y.H. Zheng, Q. Hu, Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 C. J. Food Sci. 75(3), C236 (2010)

    CAS  PubMed  Google Scholar 

  47. C.-K. Ding, K. Chachin, Y. Ueda, Y. Imahori, Purification and properties of polyphenol oxidase from loquat fruit. J. Agric. Food Chem. 46(10), 4144 (1998)

    CAS  Google Scholar 

  48. P. Perkins-Veazie, W. Kalt, Postharvest storage of blackberry fruit does not increase antioxidant levels. VIII Int. Rubus Ribes Symp. 585, 521–524 (2001)

    Google Scholar 

  49. J. An, M. Zhang, S. Wang, J. Tang, Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci. Technol. 41(6), 1100 (2008)

    CAS  Google Scholar 

  50. B. Akbudak, N. Akbudak, V. Seniz, A. Eris, Effect of pre-harvest harpin and modified atmosphere packaging on quality of cherry tomato cultivars “Alona” and “Cluster.” Br. Food J. 114, 180 (2012)

    Google Scholar 

  51. P.D. Fraser, P.M. Bramley, The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43(3), 228 (2004)

    CAS  PubMed  Google Scholar 

  52. H.A. Rathore, T. Masud, S. Sammi, A.H. Soomro, Effect of storage on physico-chemical composition and sensory properties of mango (Mangifera indica L.) variety Dosehari. Pak. J. Nutr. 6(2), 143 (2007)

    Google Scholar 

  53. M. Kantola, H. Helén, Quality changes in organic tomatoes packaged in biodegradable plastic films. J. Food Qual. 24(2), 167 (2001)

    CAS  Google Scholar 

  54. G. Ronen, M. Cohen, D. Zamir, J. Hirschberg, Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 17(4), 341 (1999)

    CAS  PubMed  Google Scholar 

  55. B. Ali, A.K. Thompson, Effects of modified atmosphere packaging on post harvest qualities of pink tomatoes. Turk. J. Agric. For. 22(4), 365–372 (1998)

    Google Scholar 

  56. M. Ergun, S.A. Sargent, D.J. Huber, Postharvest quality of grape tomatoes treated with 1-methylcyclopropene at advanced ripeness stages. HortScience 41(1), 183–187 (2006)

    CAS  Google Scholar 

  57. A.A. Kader, Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol. (USA) 40(5), 99 (1986)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Zamindar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, N., Zamindar, N. & Aarabi Najvani, F. Effect of polypropylene packaging containing nano-hydroxyapatite and modified atmosphere on the physicochemical and microbial properties of cherry tomatoes. Food Measure 16, 307–323 (2022). https://doi.org/10.1007/s11694-021-01160-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01160-w

Keywords

Navigation