Skip to main content
Log in

Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Blueberries have a high commercial value on the international market but deteriorate rapidly after harvest, which is caused by high temperature and humidity. In the present work, the effects of high CO2 (25%) were evaluated at 0 °C for 35 days on the quality and Antioxidant capacity (AC) of blueberries (Vaccinium spp.). The results indicated that 25% CO2 treatment significantly delayed the respiration rate and preserved the aroma compounds. Meanwhile, the levels of aldehydes and limonene were enhanced, but esters and ethanol contents were decreased by 25% CO2-treated. In addition, the activity of the enzymes (Peroxidase (POD), Catalase (CAT) and Superoxide dismutase (SOD)) was promoted, while 25% CO2-treated inhibited Ascorbate peroxidase (APX) activity. Simutanously, 25% CO2 increased the accumulation of antioxidants (Total phenolic [TPC], flavonoid, Ascorbic acid [AsA] and Glutathione [GSH]), and the free radical-scavenging capacity (hydroxyl (·OH) and 1, 1-Diphenyl-2-picrylhydrazyl (DPPH)) was also enhanced. This study showed that high CO2 could maintain the quality of blueberries by inhibiting respiration as well as maintaining the aroma and AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AC:

Antioxidant capacity

POD:

Peroxidase

CAT:

Catalase

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

TPC:

Total phenolic

AsA:

Ascorbic acid

GSH:

Glutathione

·OH:

Hydroxyl

DPPH:

1, 1-Diphenyl-2-picrylhydrazyl

1-MCP:

1-Methlcyclopropene

MAP:

Modified atmosphere packaging

CA:

Controlled atmosphere

CSP:

Chelator-soluble pectins

CK:

Control

TCA:

Trichloroacetic acid

DTNB:

5, 5’-Dithiobis-(2-nitrobenzoic acid)

EDTA-Na2 :

Ethylenediaminetetraacetic acid disodium salt

PVP:

Polyvinyl pyrrolidone

GC–MS:

Gas chromatography–mass spectrometry

EDTA:

Ethylenediaminetetraacetic acid

NBT:

Nitrotetrazolium blue chloride

PBS:

Phosphate buffer solution

ANOVA:

One-way analysis of variance

MVS:

Major volatile substances

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

References

  1. S. Tao, H. Chu, X. Chen, H. Yuan, L. Qiu, L. Zhao, D. Yan, B. Zheng, Study of the effects of 1-MCP to blueberry under cold storage. IOP conference series: earth and environmental science 61, 012041 (2017)

  2. C.C. Neto, Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 51(6), 652–664 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. A. Basu, M. Rhone, T.J. Lyons, Berries: emerging impact on cardiovascular health. Nutr. Rev. 68(3), 168–177 (2010)

    Article  PubMed  Google Scholar 

  4. M.I. Sweeney, W. Kalt, S.L. MacKinnon, J. Ashby, K.T. Gottschall-Pass, Feeding rats diets enriched in lowbush blueberry for six weeks decreases ischemiainduced brain damage. Nutr. Neurosci. 5(6), 427–431 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. H. Wang, X. Xia, L. An, Metabolomics analysis reveals the mechanism of hydrogen cyanamide in promoting flower bud break in blueberry. Agronomy 11, 102 (2021)

    Article  CAS  Google Scholar 

  6. S.J. Duthie, A.M. Jenkinson, A. Crozier, W. Mullen, L. Pirie, J. Kyle, G.G. Duthie, The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur. J. Nutr. 45(2), 113–122 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. G. Cocetta, M. Rossoni, C. Gardana, I. Mignani, A. Ferrante, A. Spinardi, Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum). Physiol. Plant. 153(2), 269–283 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. N. Tabakoglu, H. Karaca, Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (Morus nigra L.). LWT Food Sci. Technol. 92, 276–281 (2018)

    Article  CAS  Google Scholar 

  9. C. Peano, R. Briano, N.R. Giuggioli, V. Girgenti, F. Sottile, Evolution of qualitative characteristics during blueberry fruit storage in a modified atmosphere. Acta Hortic. 1071, 343–348 (2015)

    Article  Google Scholar 

  10. M. Blanch, R. Rosales, L. Goya, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio, NADP-malic enzyme and glutathione reductase contribute to glutathione regeneration in Fragaria vesca fruit treated with protective high CO2 concentrations. Postharvest Biol. Technol. 86(8), 431–436 (2013)

    Article  CAS  Google Scholar 

  11. S.H. Yong, J.H. Min, D.Y. Kim, G.K. Jin, D.J. Huber, Potential mechanisms associated with strawberry fruit firmness increases mediated by elevated pCO2. Hortic. Environ. Biotechnol. 53(1), 41–48 (2012)

    Article  Google Scholar 

  12. C. Duarte, M. Guerra, P. Daniel, A.L. Camelo, A. Yommi, Quality changes of highbush blueberries fruit stored in CA with different CO2 levels. J. Food Sci. 74(4), S154 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. M. J. Serradilla, M. del C. Villalobos, A. Hernández, A. Martín, M. Lozano, M. de G. Córdoba, Study of microbiological quality of controlled atmosphere packaged ‘Ambrunés’ sweet cherries and subsequent shelf-life. Int. J. Food Microbiol. 166(1), 85–92 (2013)

  14. S. Ali, A.S. Khan, A.U. Malik, M. Shahid, Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 206, 18–29 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. G. Gunes, C.B. Watkins, J.H. Hotchkiss, Physiological responses of fresh-cut apple slices under high CO2 and low O2 partial pressures. Postharvest Biol. Technol. 22(3), 197–204 (2001)

    Article  Google Scholar 

  16. S. Schwimmer, W.J. Weston, Onion flavor and odor, enzymatic development of pyruvic acid in onion as a measure of pungency. J. Agric. Food Chem. 9(4), 301–304 (2002)

    Article  Google Scholar 

  17. X. Yang, W. Hu, Z. Xiu, A. Jiang, X. Yang, S.Y. Jia, Y. Guan, K. Feng, Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 137, 109553 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. A. Pirie, M.G. Mullins, Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol. 58(4), 472–486 (1976)

    Article  Google Scholar 

  19. H.H. Jia, B.P. Han, J. Lin, Y.M. Qin, The determination of ascorbic acid by indirect spectrophotometry. Chem. Ind. Times 20(12), 34–36 (2006)

    CAS  Google Scholar 

  20. J.M. Chen, L. Zhou, Several methods of detected glutathione. Shandong Food Ferment. 03, 26–29 (2007)

    Google Scholar 

  21. F.H. Zhou, A.L. Jiang, K. Feng, S.T. Gu, D.Y. Xue, W.Z. Hu, Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes. Postharvest Biol. Technol. 157, 110958 (2019)

    Article  CAS  Google Scholar 

  22. C. Garcı́a-Limones, A. Hervás, J.A. Navas-Cortés, R.M. Jiménez-Dı́Az, M. Tena, Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 61(6), 325–337 (2002)

    Article  CAS  Google Scholar 

  23. Q. Zheng, J. Zuo, S. Gu, L. Gao, W. Hu, Q. Wang, A. Jiang, Putrescine treatment reduces yellowing during senescence of broccoli (Brassica oleracea L. var. italica). Postharvest Biol. Technol. 152, 29-35. (2019)

    Article  CAS  Google Scholar 

  24. W. Yi, X. Wu, R. Cao, H. Song, L. Ma, Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants. Food Chem. 117(3), 381–386 (2009)

    Article  CAS  Google Scholar 

  25. A. Jiang, X. Meng, W. Hu, M. Tian, Y. Wang, Effects of high CO2 shock treatment on physiological metabolism and quality of postharvest blueberry fruits. Transact. Chinese Soc. Agric. Eng. 27(3), 362–368 (2011)

    CAS  Google Scholar 

  26. N. Falagán, L.A. Terry, Recent advances in controlled and modified atmosphere of fresh produce. Johnson Matthey Technol. Rev. 62(1), 107–117 (2018)

    Article  Google Scholar 

  27. K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55(1), 373–399 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. A.S. Chauhan, L. Zhuang, B. Gan, Antagonism between antiviral signaling and glycolysis. Trends Endocrinol. Metab. 30, 9 (2019)

    Article  CAS  Google Scholar 

  29. J. Goliáš, A. Němcová, A. Čaněk, D. Kolenčíková, Storage of sweet cherries in low oxygen and high carbon dioxide atmospheres. Hortic. Sci. 34(1), 26–34 (2008)

    Article  Google Scholar 

  30. A.L. Jiang, H.D. Gao, W.Z. Hu, S.T. Gu, H.F. Jiang, Research progress of effects of high-concentration CO2 modified atmosphere on the physiological metabolism and ultrastructure of berry. Packaging Eng. 39(09), 96–101 (2018)

    Google Scholar 

  31. P. Ji, C.B. Wang, Q. Wang, L.J. Pang, A.Y. Sun, Quality and physiological changes of blueberry under low temperature and controlled atmosphere storage. Anhui Agri. Sci. Bull. 24(24), 19–21 (2018)

    Google Scholar 

  32. J. Goliáš, J. Létal, O. Veselý, Effect of low oxygen and high carbon dioxide atmospheres on the formation of volatiles during storage of two sweet cherry cultivars. Hortic. Sci. 39(4), 172–180 (2012)

    Article  Google Scholar 

  33. M. Blanch, I. Álvarez, M.T. Sanchez-Ballestaa, M.I. Escribanoa, C. Merodioa, Involvement of fatty acids in the response to high CO2 and low temperature in harvested strawberries. Postharvest Biol. Technol. 147, 196–205 (2019)

    Article  CAS  Google Scholar 

  34. J. Song, F. Bangerth, The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biol. Technol. 8(4), 259–269 (1996)

    Article  CAS  Google Scholar 

  35. O.J. Caleb, P.V. Mahajan, M. Manley, U.L. Opara, Evaluation of parameters affecting modified atmosphere packaging engineering design for pomegranate arils. Int. J. Food Sci. Technol. 48(11), 2315–2323 (2013)

    CAS  Google Scholar 

  36. J. Yan, Y. Song, J. Li, W. Jiang, Forced-air precooling treatment enhanced antioxidant capacities of apricots. J. Food Process. Pres. 42(1), e13320 (2018)

    Article  CAS  Google Scholar 

  37. J. Shi, J. Zuo, F. Zhou, L. Gao, Q. Wang, A. Jiang, Low-temperature conditioning enhances chilling tolerance and reduces damage in cold-stored eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol. 141, 33–38 (2018)

    Article  CAS  Google Scholar 

  38. T. Dong, J. Shi, C.Z. Jiang, Y. Feng, Y. Cao, Q. Wang, A short-term carbon dioxide treatment inhibits the browning of fresh-cut burdock. Postharvest Biol. Technol. 110, 96–102 (2015)

    Article  CAS  Google Scholar 

  39. T. Deuchande, S.M.P. Carvalho, J. Giné-Bordonaba, M.W. Vasconcelos, C. Larrigaudière, Transcriptional and biochemical regulation of internal browning disorder in ‘Rocha’ pear as affected by O2 and CO2 concentrations. Postharvest Biol. Technol. 132, 15–22 (2017)

    Article  CAS  Google Scholar 

  40. J. Sun, H. Lin, S. Zhang, Y. Lin, H. Wang, M. Lin, Y. Hung, Y. Chen, The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. and Maubl.-induced pericarp browning and disease development of harvested longan fruit. Food Chem. 247, 16–22 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. R. Mittler, Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405–410 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. J.C. Pennycooke, S. Cox, C. Stushnoff, Relationship of cold acclimation, totalphenol content and antioxidant capacity with chilling tolerance in petunia (Petunia hybrida). Environ. Exp. Bot. 53, 225–232 (2005)

    Article  CAS  Google Scholar 

  43. H. Wang, W. Zhi, H.X. Qu, H.T. Lin, Y.M. Jiang, Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit. Chem. Cent. J. 9, 54 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. S. Kumari, M. Agrawal, S. Tiwari, Impact of elevated CO2 and elevated O3 on Beta vulgaris, L.: pigments, metabolites, antioxidants, growth and yield. Environ. Pollut. 174(5), 279–288 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. L. Wang, H. Zhang, P. Jin, X. Guo, Y. Li, C. Fan, J. Wang, Y.H. Zheng, Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biol. Technol. 118, 71–78 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the ‘Thirteenth Five-Year Plan’ for National Key Research and Development Program (Grant No. 2016YFD0400903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Hu or Aili Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Hu, W., Jiang, A. et al. Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.). Food Measure 15, 5735–5743 (2021). https://doi.org/10.1007/s11694-021-01062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01062-x

Keywords

Navigation