Skip to main content
Log in

Formulation optimization and impact of environmental and storage conditions on physicochemical stability of pistachio milk

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Pistachio milk, as a non-dairy nutraceutical beverage, is a thermodynamically unstable colloidal system. So, this study aimed to optimize pistachio milk production in terms of pistachio slurry (20–40%), emulsifier content (0.5–1%), and ultrasonic power of 200–400 W as independent variables using response surface methodology based on particle size and polydispersity index (PDI) as responses. Moreover, the influence of environmental treatments (pH variation, freeze–thaw cycles, and different temperatures) and 28-day storage (at 4 and 20 °C) was evaluated on physicochemical properties of the optimum formula. The results showed an increment in pistachio slurry (%) had a positive relationship with particle size and its PDI, despite the emulsifier enhancement. The software, based on central composite design, selected the pistachio milk containing 28.5% pistachio slurry, 1% emulsifier produced by 200 w ultrasonic power as the best sample. It found that the acidic pH, continuous freeze–thaw cycles, and temperature increment decreased the particle charge and elevated the size and PDI of the sample leading to low colloidal stability. Furthermore, the storage data showed the colloidal and oxidative stability of the specimen reduced during the time, even though the samples stored at 4 °C were more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Ni, Z. Zhang, L. Fan, J. Li, Evaluation of physical stability of high pressure homogenization treatment cloudy ginkgo beverages. LWT 111, 31–38 (2019)

    Article  CAS  Google Scholar 

  2. I. Atalar, O. Gul, M. Mortas, L. Gul, F. Saricaoglu, F. Yazici, Effect of thermal treatment on microbiological, physicochemical and structural properties of high pressure homogenised hazelnut beverage. Qual. Assur. Saf. Crop. Foods 11(6), 561–570 (2019)

    Article  CAS  Google Scholar 

  3. D. Angelino, A. Rosi, G. Vici, M. Dello Russo, N. Pellegrini, D. Martini, S.Y.W. Group, Nutritional quality of plant-based drinks sold in Italy: the food labelling of Italian Products (FLIP) study. Foods 9(5), 682 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  4. M.F. Manzoor, N. Ahmad, R.M. Aadil, A. Rahaman, Z. Ahmed, A. Rehman, A. Siddeeg, X.A. Zeng, A. Manzoor, Impact of pulsed electric field on rheological, structural, and physicochemical properties of almond milk. J. Food Process Eng. 42(8), e13299 (2019)

    Article  Google Scholar 

  5. A.P. Gama, Y.C. Hung, K. Adhikari, Optimization of emulsifier and stabilizer concentrations in a model Peanut-Based beverage system: a mixture design approach. Foods 8(4), 116 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  6. S. Sethi, S.K. Tyagi, R.K. Anurag, Plant-based milk alternatives an emerging segment of functional beverages: a review. J. Food Sci. Technol. 53(9), 3408–3423 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.R. Taherian, P. Fustier, M. Britten, H.S. Ramaswamy, Rheology and stability of beverage emulsions in the presence and absence of weighting agents: a review. Food Biophys. 3(3), 279–286 (2008)

    Article  Google Scholar 

  8. M.N. Nasrabadi, S.A.H. Goli, Stability assessment of conjugated linoleic acid (CLA) oil-in-water beverage emulsion formulated with acacia and xanthan gums. Food Chem. 199, 258–264 (2016)

    Article  CAS  Google Scholar 

  9. K.P. Drapala, D.M. Mulvihill, J.A. O’Mahony, A review of the analytical approaches used for studying the structure, interactions and stability of emulsions in nutritional beverage systems. Food Struct. 16, 27–42 (2018)

    Article  Google Scholar 

  10. S. Liu, C. Sun, Y. Xue, Y. Gao, Impact of pH, freeze–thaw and thermal sterilization on physicochemical stability of walnut beverage emulsion. Food Chem. 196, 475–485 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Maghsoudlou, M. Alami, M. Mashkour, M.H. Shahraki, Optimization of ultrasound-assisted stabilization and formulation of almond milk. J. Food Process. Preserv. 40(5), 828–839 (2016)

    Article  CAS  Google Scholar 

  12. O. Gul, I. Atalar, F.T. Saricaoglu, F. Yazici, Effect of multi-pass high pressure homogenization on physicochemical properties of hazelnut milk from hazelnut cake: An investigation by response surface methodology. J. Food Process. Preserv. 42(5), e13615 (2018)

    Article  CAS  Google Scholar 

  13. R.M. Ojeda-Amador, G. Fregapane, M.D. Salvador, Composition and properties of virgin pistachio oils and their by-products from different cultivars. Food Chem. 240, 123–130 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. A. Abdolshahi, M.H. Majd, J.S. Rad, M. Taheri, A. Shabani, J.A.T. Da Silva, Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil. J. Food Sci. Technol. 52(4), 2422–2427 (2015)

    Article  PubMed  Google Scholar 

  15. M.H. Grace, D. Esposito, M.A. Timmers, J. Xiong, G. Yousef, S. Komarnytsky, M.A. Lila, Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chem. 210, 85–95 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. M.P. Fabani, L. Luna, M.V. Baroni, M.V. Monferran, M. Ighani, A. Tapia, D.A. Wunderlinb, G.E. Feresin, Pistachio (Pistacia vera var Kerman) from Argentinean cultivars. A natural product with potential to improve human health. J. Funct. Foods 5(3), 1347–1356 (2013)

    Article  CAS  Google Scholar 

  17. A.S. Ardakani, M. Shahedi, G. Kabir, Optimizing of the process of pistachio butter production, in Proceedings of the IVth International Symposium on Pistachios and Almonds. ed. by A. Javanshah, E. Facelli, M. Wirthensohn (ISHS, Tehran, 2005), pp. 565–568

    Google Scholar 

  18. Ö.F. Gamli, I. Hayoglu, Effects of nut proportion and storage temperature on some chemical parameters of pistachio nut cream. J. Food Sci. Eng. 2(1), 15 (2012)

    Google Scholar 

  19. A. Shakerardekani, R. Karim, H.M. Ghazali, N.L. Chin, The effect of monoglyceride addition on the rheological properties of pistachio spread. J. Am. Oil Chem. Soc. 90(10), 1517–1521 (2013)

    Article  CAS  Google Scholar 

  20. A. Shakerardekani, R. Karim, N. Vaseli, The effect of processing variables on the quality and acceptability of pistachio milk. J. Food Process. Preserv. 37(5), 541–545 (2013)

    Article  CAS  Google Scholar 

  21. M. Abdollahi, S.A.H. Goli, N. Soltanizadeh, Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum. Eur. J. Lipid Sci. Technol. 122, 1900196 (2019)

    Article  CAS  Google Scholar 

  22. M. Homayoonfal, F. Khodaiyan, S.M. Mousavi, Optimization of walnut oil nanoemulsions prepared using ultrasonic emulsification: a response surface method. J. Dispers. Sci. Technol. 35(5), 685–694 (2014)

    Article  CAS  Google Scholar 

  23. N. Konar, O. Ozarda, S. Senocak, N.N. Unluturk, S. Oba, Effects of process conditions on citrus beverage emulsions’ creaming index: RSM approach. Int. J. Food Eng. 5(1), 22–27 (2019)

    Article  Google Scholar 

  24. S. Liu, F. Liu, Y. Xue, Y. Gao, Evaluation on oxidative stability of walnut beverage emulsions. Food Chem. 203, 409–416 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. N. Bernat, M. Chafer, J. Rodríguez-García, A. Chiralt, C. González-Martínez, Effect of high pressure homogenisation and heat treatment on physical properties and stability of almond and hazelnut milks. LWT-Food Sci. Technol. 62(1), 488–496 (2015)

    Article  CAS  Google Scholar 

  26. N.N. Wu, X.Q. Yang, Z. Teng, S.W. Yin, J.H. Zhu, J.R. Qi, Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values. Food Res. Int. 44(4), 1059–1068 (2011)

    Article  CAS  Google Scholar 

  27. J.N. Hu, H. Zheng, X.X. Chen, X. Li, Y. Xu, M.F. Xu, Synergetic effects of whey protein isolate and naringin on physical and oxidative stability of oil-in-water emulsions. Food Hydrocoll. 101, 105517 (2020)

    Article  CAS  Google Scholar 

  28. Z. Zhang, X. Wang, J. Yu, S. Chen, H. Ge, L. Jiang, Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates. LWT 78, 241–249 (2017)

    Article  CAS  Google Scholar 

  29. S.M.T. Gharibzahedi, S.M. Mousavi, M. Hamedi, F. Khodaiyan, S.H. Razavi, Development of an optimal formulation for oxidative stability of walnut-beverage emulsions based on gum arabic and xanthan gum using response surface methodology. Carbohydr. Polym. 87(2), 1611–1619 (2012)

    Article  CAS  Google Scholar 

  30. V. Ghosh, S. Saranya, A. Mukherjee, N. Chandrasekaran, Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. Nanotechnol. 13(1), 114–122 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. J. Carpenter, V.K. Saharan, Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrason. Sonochem. 35, 422–430 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. D.C. Valencia-Flores, M. Hernández-Herrero, B. Guamis, V. Ferragut, Comparing the effects of ultra-high-pressure homogenization and conventional thermal treatments on the microbiological, physical, and chemical quality of almond beverages. J. Food Sci. 78(2), 199–205 (2013)

    Article  CAS  Google Scholar 

  33. O. Gul, F.T. Saricaoglu, M. Mortas, I. Atalar, F. Yazici, Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk. Innov. Food Sci. Emerg. Technol. 41, 411–420 (2017)

    Article  CAS  Google Scholar 

  34. N.N. Wu, X. Huang, X.Q. Yang, J. Guo, E.L. Zheng, S.W. Yin, J.H. Zhu, J.R. Qi, X.T. He, J.B. Zhang, Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling. Food Hydrocoll. 28(1), 110–120 (2012)

    Article  CAS  Google Scholar 

  35. Y. Ni, X. Tang, L. Fan, Improvement in physical and thermal stability of cloudy ginkgo beverage during autoclave sterilization: effects of microcrystalline cellulose and gellan gum. LWT 135, 110062 (2021)

    Article  CAS  Google Scholar 

  36. A. Teo, K.K. Goh, J. Wen, I. Oey, S. Ko, H.S. Kwak, S.J. Lee, Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: effect of temperature, pH and salt. Food Chem. 197, 297–306 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. K.O. Choi, N. Aditya, S. Ko, Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem. 147, 239–244 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. H. Saito, A. Kawagishi, M. Tanaka, T. Tanimoto, S. Okada, H. Komatsu, T. Handa, Coalescence of lipid emulsions in floating and freeze–thawing processes: examination of the coalescence transition state theory. J. Colloid Interface Sci. 219(1), 129–134 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. P. Thanasukarn, R. Pongsawatmanit, D. McClements, Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by whey protein isolate. Colloids Surf. A Physicochem. Eng. Asp. 246(1–3), 49–59 (2004)

    Article  CAS  Google Scholar 

  40. X. Wang, S. Chen, Q. Cui, R. Li, X. Wang, L. Jiang, Effect of pH on freeze-thaw stability of glycated soy protein isolate. J. Oleo Sci. 68(3), 281–290 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. S.J. Lee, S.J. Choi, Y. Li, E.A. Decker, D.J. McClements, Protein-stabilized nanoemulsions and emulsions: comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agric. Food Chem. 59(1), 415–427 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. S. Abbott, Surfactant science: principles and practice. Update 1, 2–26 (2016)

    Google Scholar 

  43. C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Physical and chemical stability of β-carotene-enriched nanoemulsions: influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 132(3), 1221–1229 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. S.J. Choi, E.A. Decker, L. Henson, L.M. Popplewell, H. Xiao, D.J. McClements, Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: influence of pH and lyso-lecithin addition. Food Res. Int. 44(9), 3006–3012 (2011)

    Article  CAS  Google Scholar 

  45. A. Molet-Rodríguez, L. Salvia-Trujillo, O. Martín-Belloso, Beverage emulsions: key aspects of their formulation and physicochemical stability. Beverages 4(3), 70 (2018)

    Article  CAS  Google Scholar 

  46. P. Thanasukarn, R. Pongsawatmanit, D.J. McClements, Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by a nonionic surfactant. J. Agric. Food Chem. 54(10), 3591–3597 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. B.M. Degner, C. Chung, V. Schlegel, R. Hutkins, D.J. McClements, Factors influencing the freeze-thaw stability of emulsion-based foods. Compr. Rev. Food Sci. Food Saf. 13(2), 98–113 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. J. Boyd, C. Parkinson, P. Sherman, Factors affecting emulsion stability, and the HLB concept. J. Colloid Interface Sci. 41(2), 359–370 (1972)

    Article  CAS  Google Scholar 

  49. S.M.T. Gharibzahedi, S.M. Mousavi, M. Hamedi, M. Ghasemlou, Response surface modeling for optimization of formulation variables and physical stability assessment of walnut oil-in-water beverage emulsions. Food Hydrocoll. 26(1), 293–301 (2012)

    Article  CAS  Google Scholar 

  50. T. Waraho, D.J. McClements, E.A. Decker, Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol. 22(1), 3–13 (2011)

    Article  CAS  Google Scholar 

  51. Q. Wang, J. Jiang, Y.L. Xiong, High pressure homogenization combined with pH shift treatment: a process to produce physically and oxidatively stable hemp milk. Food Res. Int. 106, 487–494 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Amir Hossein Goli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakzadeh, R., Goli, S.A.H., Abdollahi, M. et al. Formulation optimization and impact of environmental and storage conditions on physicochemical stability of pistachio milk. Food Measure 15, 4037–4050 (2021). https://doi.org/10.1007/s11694-021-00963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00963-1

Keywords

Navigation