Skip to main content
Log in

Bioactive compounds, antioxidant properties and phenolic profile of pulp and seed of Syzygium cumini

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study was conducted to explore major bioactive compounds, antioxidant properties, along with individual phenolic compounds of Syzygium cumini fruit pulp (edible part, pulp with peel) and seed. The in vitro antioxidant properties of S. cumini fruit pulp and seed were analyzed using 2,2-diphenil-1-pycrilhydrazyl (DPPH), 2,2´-azino-bis (3-ethylbenzothiazolin)-6-sulfonic acid (ABTS) free radical scavenging assay methods. Phenolic profiles were explored using high performance liquid chromatography-diode array detector (HPLC–DAD). Total phenolics, flavonoids, and tannin content were significantly (P < 0.05) higher in seed extract and displayed better antioxidant properties than that of pulp extract. The antioxidant activities of S. cumini seed extract was comparable with other potent antioxidants like ascorbic acid. S. cumini seed extract demonstrated significantly higher antioxidant activity than ascorbic acid in ABTS free radical scavenging assay. Regression analysis showed a strong positive correlation between the concentration of bioactive compounds and free radical scavenging activity of the samples. Additionally, ten individual phenolic compounds among the nineteen standards were identified using HPLC–DAD analysis. Contents of gallic acid, epicatechin, and catechin hydrate were predominant among the identified phenolic compounds. This study showed that the seed of S. cumini has immense potential as a source of natural bioactive compounds with excellent antioxidant properties. The findings of the present study are pioneering to move to advanced research on the utilization of S. cumini seed as an alternative to artificial antioxidants in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. I. Gulcin, Arch Toxicol. (2020). https://doi.org/10.1007/s00204-020-02689-3

    Article  PubMed  Google Scholar 

  2. A. Gordon, E. Jungfer, B.A. da Silva, J.G.S. Maia, F. Marx, J. Agric. Food Chem. (2011). https://doi.org/10.1021/jf201039r

    Article  PubMed  PubMed Central  Google Scholar 

  3. A.M. El-Anany, R.F.M. Ali, J. Food Sci. Technol. (2013). https://doi.org/10.1007/s13197-011-0372-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. A.Z. Barakat, A.R. Hamed, R.I. Bassuiny et al., J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00356-5

    Article  Google Scholar 

  5. P. Maisuthisakul, M. Suttajit, R. Pongsawatmanit, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2005.11.032

    Article  Google Scholar 

  6. I. Parejo, F. Viladomat, J. Bastida et al., J Agric Food Chem. (2002). https://doi.org/10.1021/jf020540a

    Article  PubMed  Google Scholar 

  7. B. Asghari, S. Mafakheri, G. Zengin et al., J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00466-5

    Article  Google Scholar 

  8. M. Kosanić, N. Petrović, T. Stanojković, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00354-7

    Article  Google Scholar 

  9. M.M. Özcan, F.A. Juhaimi, I.A.M. Ahmed et al., J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00387-3

    Article  Google Scholar 

  10. K. Šavikin, G. Zdunić, T. Janković, S. Tasić, N. Menković, T. Stević, B. Dordević, Plant Foods Hum. Nutr. (2009). https://doi.org/10.1007/s11130-009-0123-2

    Article  PubMed  Google Scholar 

  11. T. Piechowiak, P. Antos, P. Kosowski, K. Skrobacz, R. Józefczyk, M. Balawejder, Agric. Food Sci. (2019). https://doi.org/10.23986/afsci.70291

    Article  Google Scholar 

  12. M.S. Baliga, H.P. Bhat, B.R.V. Baliga, R. Wilson, P.L. Palatty, Food Res. Int. (2011). https://doi.org/10.1016/j.foodres.2011.02.007

    Article  Google Scholar 

  13. P.S. Benherlal, C. Arumughan, J. Sci. Food Agric. (2007). https://doi.org/10.1002/jsfa.2957

    Article  PubMed  Google Scholar 

  14. U. Balyan, B. Sarkar, Int. J. Food Prop. (2017). https://doi.org/10.1080/10942912.2016.1163266

    Article  Google Scholar 

  15. J.P. Singh, A. Kaur, N. Singh, L. Nim, K. Shevkani, H. Kaur, D.S. Arora, LWT Food Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2015.09.038

    Article  Google Scholar 

  16. A. Banerjee, N. Dasgupta, B. De, Food Chem. (2005). https://doi.org/10.1016/j.foodchem.2004.04.033

    Article  Google Scholar 

  17. P.C. Wootton-Beard, A. Moran, L. Ryan, Food Res. Int. (2011). https://doi.org/10.1016/j.foodres.2010.10.033

    Article  Google Scholar 

  18. C. Chia-Chi, Y. Ming-Hua, W. Hwei-Mei, C. Jiing-Chuan, J. Food Drug Anal. 10, 178 (2002)

    Google Scholar 

  19. E.L.C. Amorim, T.J.S.P. Sobrinho, U.P. Albuquerque, Funct. Ecosyst. Communities 2, 88 (2008)

    Google Scholar 

  20. K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, J. Agric. Food Chem. (1992). https://doi.org/10.1021/jf00018a005

    Article  Google Scholar 

  21. V. Baltrušaitytė, P.R. Venskutonis, V. Čeksterytė, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.02.007

    Article  Google Scholar 

  22. S. Chuanphongpanich, S. Phanichphant, C. Mai, J. Sci. 33, 103 (2006)

    CAS  Google Scholar 

  23. L. Guo, D. Tan, R. Bao et al., J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00311-4

    Article  Google Scholar 

  24. H. Khan, W. Ahmad, I. Hussain et al., J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00310-5

    Article  Google Scholar 

  25. C.C. Denardin, G.E. Hirsch, R.F. da Rocha, M. Vizzotto, A.T. Henriques, J.C.F. Moreira, F.T.C.R. Guma, T. Emanuelli, J. Food Drug Anal. (2015). https://doi.org/10.1016/j.jfda.2015.01.006

    Article  PubMed  Google Scholar 

  26. J. Namiesnik, K. Vearasilp, M. Kupska et al., Eur. Food Res. Technol. (2013). https://doi.org/10.1007/s00217-013-2041-7

    Article  Google Scholar 

  27. M.A. Al-Farsi, C.Y. Lee, Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2007.12.009

    Article  PubMed  Google Scholar 

  28. Y. Soong, P.J. Barlow, Food Chem. (2004). https://doi.org/10.1016/j.foodchem.2004.02.003

    Article  Google Scholar 

  29. J. Kellogg, J. Wang, C. Flint, D. Ribnicky, P. Kuhn, E.G.D. Mejia et al., J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf902693r

    Article  PubMed  PubMed Central  Google Scholar 

  30. A. Szajdek, E.J. Borowska, Plant Foods Hum. Nutr. (2008). https://doi.org/10.1007/s11130-008-0097-5

    Article  PubMed  Google Scholar 

  31. N. Babbar, H.S. Oberoi, D.S. Uppal, R.T. Patil, Food Res. Int. (2011). https://doi.org/10.1016/j.foodres.2010.10.001

    Article  Google Scholar 

  32. N. Loganayaki, P. Siddhuraju, S. Manian, J. Food Sci. Technol. (2013). https://doi.org/10.1007/s13197-011-0389-x

    Article  PubMed  Google Scholar 

  33. P. Biparva, M. Ehsani, M.R. Hadjmohammadi, J. Food Compost. Anal. (2012). https://doi.org/10.1016/j.jfca.2012.04.002

    Article  Google Scholar 

  34. R. Rodil, J.B. Quintana, G. Basaglia, M.C. Pietrogrande, R. Cela, J. Chromatogr. (2010). https://doi.org/10.1016/j.chroma.2010.08.020

    Article  Google Scholar 

  35. J.E.N. Dolatabadi, S. Kashanian, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2010.03.026

    Article  Google Scholar 

  36. IARC, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Overall Evaluation of Carcinogenicity: An Updating of IARC Monograph (International Agency for Research on Cancer, Lyon, 1987), p. 59

    Google Scholar 

  37. G. Chevillard, Z. Nouhi, D. Anna, M. Paquet, V. Blank, FEBS Lett. (2010). https://doi.org/10.1016/j.febslet.2010.01.028

    Article  PubMed  Google Scholar 

  38. S. Kashanian, J.E.N. Dolatabadi, Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2009.03.027

    Article  Google Scholar 

  39. G.J. Eler, R.M. Peralta, A. Bracht, Chem. Biol. Interact. (2009). https://doi.org/10.1016/j.cbi.2009.07.006

    Article  PubMed  Google Scholar 

  40. J.H. Kim, N.J. Kang, B.K. Lee, K.W. Lee, H.J. Lee, Mutat. Res. Fundam. Mol. Mech. Mutagen. (2008). https://doi.org/10.1016/j.mrfmmm.2007.10.005

    Article  Google Scholar 

  41. D.J. McClements, E.A. Decker, S. Damodaran, K.L. Parkin, O.R. Fennema, Lipids (CRC Press, New York, 2007), pp. 156–212

    Google Scholar 

  42. J.M. Lorenzo, M. Pateiro, R. Domínguez, F.J. Barba, P. Putnik, D.B. Kovačević, A. Shpigelman, D. Granato, D. Franco, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2017.12.005

    Article  PubMed  Google Scholar 

  43. F. Aladedunye, B. Matthäus, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.02.139

    Article  PubMed  Google Scholar 

  44. I.M. Abu-Reidah, M.S. Ali-Shtayeh, R.M. Jamous, D. Arráez-Román, A. Segura-Carretero, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.06.011

    Article  PubMed  Google Scholar 

  45. J. Alamed, W. Chaiyasit, D.J. McClements, E.A. Decker, J. Agric. Food Chem. (2009). https://doi.org/10.1021/jf803436c

    Article  PubMed  Google Scholar 

  46. S. Kiokias, T. Varzakas, V. Oreopoulou, Crit. Rev. Food Sci. Nutr. (2008). https://doi.org/10.1080/10408390601079975

    Article  PubMed  Google Scholar 

  47. M. Naczk, F. Shahidi, J. Chromatogr. A (2004). https://doi.org/10.1016/j.chroma.2004.08.059

    Article  PubMed  Google Scholar 

  48. B. Nanditha, P. Prabhasankar, Crit. Rev. Food Sci. Nutr. (2009). https://doi.org/10.1080/10408390701764104

    Article  PubMed  Google Scholar 

  49. M.H. Oak, J. El Bedoui, V.B. Schini-Kerth, J. Nutr. Biochem. (2005). https://doi.org/10.1016/j.jnutbio.2004.09.004

    Article  PubMed  Google Scholar 

  50. K. Shetty, Process Biochem. (2004). https://doi.org/10.1016/S0032-9592(03)00088-8

    Article  Google Scholar 

  51. C.S. Yang, J.M. Landau, M.T. Huang, H.L. Newmark, Annu. Rev. Nutr. (2001). https://doi.org/10.1146/annurev.nutr.21.1.381

    Article  PubMed  Google Scholar 

  52. L.H. Yao, Y.M. Jiang, J. Shi, F.A. Tomas-Barberan, N. Datta, R. Singanusong, S.S. Chen, Plant Foods Hum. Nutr. (2004). https://doi.org/10.1007/s11130-004-0049-7

    Article  PubMed  Google Scholar 

  53. D.-O. Kim, K.W. Lee, H.J. Lee, C.Y. Lee, J. Agric. Food Chem. (2002). https://doi.org/10.1021/jf020071c

    Article  PubMed  Google Scholar 

  54. I. Bernatova, Biotechnol. Adv. (2018). https://doi.org/10.1016/j.biotechadv.2018.01.009

    Article  PubMed  Google Scholar 

  55. F. Shahidi, P. Ambigaipalan, J. Funct. Foods (2015). https://doi.org/10.1016/j.jff.2015.06.018

    Article  Google Scholar 

Download references

Funding

This study was funded by Ministry of Science and Technology, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafi Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Jahan, I.A., Hossain, M.H. et al. Bioactive compounds, antioxidant properties and phenolic profile of pulp and seed of Syzygium cumini. Food Measure 15, 1991–1999 (2021). https://doi.org/10.1007/s11694-020-00798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00798-2

Keywords

Navigation