Skip to main content

Advertisement

Log in

In vitro digestibility and stability of encapsulated yerba mate extract and its impact on yogurt properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The development of ready-to-eat foods containing bioactive extracts represents an important step to improve food consumption. This study aimed to develop a yogurt containing an encapsulated bioactive yerba mate extract. For this, the lyophilized extract was protected through encapsulation in solid lipid particles (SLPs) of beeswax. An encapsulation efficiency (EE) greater than 90% was achieved with an extract content higher than 20%. The FTIR spectrum of the capsules’ wall material, indicated that beeswax efficiently encapsulated the yerba mate extract. The extract antioxidant potential was protected for 45 days under cold storage, and the encapsulation maintained the viability of the yogurt lactic acid bacteria. The increase in free fatty acids from seven to 33% during in vitro digestion indicated the capsule rupture during the digestion process. Moreover, the extract encapsulation maintained viable lactic acid bacteria in yogurt. The addition of SLPs did not affect the acceptability of the yogurt or the consumers’ intention to buy the product. However, the score attributed to the product evaluators was surprisingly low and portrayed the consumer's preference for foods with added sugar. This work introduced a natural, ready-to-eat and health-promoting food product containing SLP-protected antioxidant compounds. The addition of compounds encapsulated in foods is promising and can benefit consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y. Theapparat, S. Khongthong, P. Rodjan, K. Lertwittayanon, D. Faroongsarng, J. For. Res. (2019). https://doi.org/10.1007/s11676-018-0675-9

    Article  Google Scholar 

  2. C.H. Blum-Silva, A.B.G. Luz, M.V.P.S. Nascimento, B.M.C. Facchin, B. Baratto, T.S. Fröde, L.P. Sandjo, E.M. Dalmarco, F.H. Reginatto, Data Brief. (2016). https://doi.org/10.1016/j.dib.2016.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  3. N. Bracesco, Biomed. J. Sci. Tech. Res. (2019) https://doi.org/https://doi.org/10.26717/BJSTR.2019.16.002808

  4. R.L. Ceballos, O. Ochoa-Yepes, S. Goyanes, C. Bernal, L. Famá, Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116495

    Article  PubMed  Google Scholar 

  5. E. Fayad, S. El-Sawalhi, L. Azizi, M. Beyrouthy, R.M. Abdel-Massih, LWT-Food Sci. Technol. (2020). https://doi.org/10.1016/j.lwt.2020.109267

    Article  Google Scholar 

  6. M.A. Knapp, D.F. Santos, D. Pilatti-Riccio, V.G. Deon, G.H.F. Santos, V.Z. Pinto, J. Food Process Preserv. (2019). https://doi.org/10.1111/jfpp.13897

    Article  Google Scholar 

  7. D. Fenoglio, D.S. Madrid, J.A. Moyano, M. Ferrario, S. Guerrero, S. Matiacevich, J. Food Sci. Technol. (2020). https://doi.org/10.1007/s13197-020-04669-y

    Article  Google Scholar 

  8. R.S. Garcia-Lazaro, H. Lamdan, L.G. Caligiuri, N. Lorenzo, A.L. Berengeno, H.H. Ortega, H.G. Farina, J. Food Sci. (2020). https://doi.org/10.1111/1750-3841.15169

    Article  PubMed  Google Scholar 

  9. P.M. Godwin, Y. Pan, H. Xiao, M.T. Afzal. J. Bioresources Bioprod. (2019) https://doi.org/https://doi.org/10.21967/jbb.v4i1.180

  10. A.B. Albadarin, S. Solomon, M. Abou Daher, G. Walker. J. Taiwan Inst. Chem. Eng. (2018) https://doi.org/https://doi.org/10.1016/j.jtice.2017.11.012

  11. L.F. Santos, B.K. Vargas, C.D. Bertol, B. Biduski, T.E. Bertolin, L.R. Santos, V.B. Brião, Food Bioprod. Process. (2020). https://doi.org/10.1016/j.fbp.2020.04.002

    Article  Google Scholar 

  12. L.R. Ramos, J.S. Santos, H. Daguer, A.C. Valese, A.G. Cruz, D. Granato, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.11.069

    Article  PubMed  Google Scholar 

  13. L.A. Gremski, A.L.K. Coelho, J.S. Santos, H. Daguer, L. Molognoni, L. Do Prado-Silva, A.S. Sant'Ana, R. da S. Rocha, M.C. Da Silva, A.G. Cruz, L. Azevedo, M.A.V. Do Carmo, M. Wen, L. Zhang, D. Granato, Food Chem. (2019) https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125098

  14. B.R. Saraiva, A.C.P. Vital, F.A. Anjo, J.C.R. Ribas, P.T.M. Pinto, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03589-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. D. Pilatti-Riccio, D.F. Dos Santos, A.D. Meinhart, M.A. Knapp, H.C. Dos S. Hackbart, V.Z. Pinto, Food Res. Int. (2019) https://doi.org/https://doi.org/10.1016/j.foodres.2019.108600

  16. K.J. Aryana, D.W. Olson, J. Dairy Sci. (2017). https://doi.org/10.3168/jds.2017-12981

    Article  PubMed  Google Scholar 

  17. G. Botelho, S. Canas, J. Lameiras, Nut. Deliver. (2017). https://doi.org/10.1016/B978-0-12-804304-2.00014-7

    Article  Google Scholar 

  18. B. Biduski, D.H. Kringel, R. Colussi, H.C.S. Hackbart, L.T. Lim, A.R.G. Dias, E.R. Zavareze, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.203

    Article  PubMed  Google Scholar 

  19. F.P. Flores, R.K. Singh, W.L. Kerr, R.B. Pegg, F. Kong, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.12.063

    Article  PubMed  Google Scholar 

  20. N. Kasiri, M. Fathi, Int. J. Biol. Macromol. (2017) https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.08.112

  21. O. Shamsara, S. Mahdi, Z.K. Muhidinov, Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.164

    Article  PubMed  Google Scholar 

  22. M. Premi, H.K. Sharma, Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.160

    Article  PubMed  Google Scholar 

  23. A. López-Córdoba, L. Deladino, M. Martino, Carbohydr. Polym. (2014). https://doi.org/10.1016/j.carbpol.2013.08.026

    Article  PubMed  Google Scholar 

  24. H. Pool, S. Mendoza, H. Xiao, D.J. McClements, Food Funct. (2013). https://doi.org/10.1039/c2fo30042g

    Article  PubMed  Google Scholar 

  25. F. Bazzarelli, E. Piacentini, L. Giorno, J. Membr. Sci. (2017). https://doi.org/10.1016/j.memsci.2017.07.029

    Article  Google Scholar 

  26. M. Mellema, W.A.J. Van Benthum, B. Boer, J. Von Harras, A. Visser, J. Microencapsul. (2006). https://doi.org/10.1080/02652040600787900

    Article  PubMed  Google Scholar 

  27. C.V. Molina, J.G. Lima, I.C.F. Moraes, S.C. Pinho, Food Sci. Biotechnol. (2019). https://doi.org/10.1007/s10068-018-0425-y

    Article  PubMed  Google Scholar 

  28. Q. Zhong, L. Zhang, Adv. Colloid Interface. (2019). https://doi.org/10.1016/J.CIS.2019.102033

    Article  Google Scholar 

  29. S. Haghighat-Kharazi, M.R. Kasaai, J.M. Milani, K. Khajeh, J. Texture Stud. (2020). https://doi.org/10.1111/jtxs.12516

    Article  PubMed  Google Scholar 

  30. N. Ngamekaue, P. Chitprasert, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.002

    Article  PubMed  Google Scholar 

  31. Y. Chen, Z.F. Fu, Z.C. Tu, H. Wang, L. Zhang, X. Xie, G. Liu, Int. J. Food Sci. Tech. (2017). https://doi.org/10.1111/ijfs.13377

    Article  Google Scholar 

  32. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radical. Bio. Med. (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  33. A. Gifani, M. Taghizadeh, A.A. Seifkordi, M. Ardjmand, J. Microencapsul. (2009). https://doi.org/10.1080/02652040802413107

    Article  PubMed  Google Scholar 

  34. M. Cano-Chauca, P.C. Stringheta, A.M. Ramos, J. Cal-Vidal, Innov. Food Sci. Emerg. (2005). https://doi.org/10.1016/J.IFSET.2005.05.003

    Article  Google Scholar 

  35. M. Hu, Y. Li, E.A. Decker, D.J. McClements, Food Hydrocoll. (2010). https://doi.org/10.1016/j.foodhyd.2010.03.010

    Article  Google Scholar 

  36. M. Barkallah, M. Dammak, I. Louati, F. Hentati, B. Hadrich, T. Mechichi, M.A. Ayadi, I. Fendri, H. Attia, S. Abdelkafi, LWT-Food Sci. Tech. (2017). https://doi.org/10.1016/j.lwt.2017.05.071

    Article  Google Scholar 

  37. M. Demirkol, Z. Tarakci, LWT-Food Sci. Tech. (2018). https://doi.org/10.1016/j.lwt.2018.07.058

    Article  Google Scholar 

  38. N. Da Silva, V.C.A. Junqueira, N.F. de A. Silveira, M.H. Taniwaki, R.A.R. Gomes, M.M. Okazaki, Manual de Métodos de Análise Microbiológica de Alimentos e Água, 5th edn (Varela, São Paulo, 2017), p. 535

  39. M. Meilgaard, G.V. Civille, B.T. Carr, Sensory Evaluation Techniques, 4th edn. (Taylor & Francis, London, 2007), p. 464

    Google Scholar 

  40. J. Villacís-Chiriboga, A. García-Ruiz, N. Baenas, D.A. Moreno, A.J. Meléndez-Martínez, C.M. Stinco, L. Jerves-Andrade, F. León-Tamariz, J. Ortiz-Ulloa, J. Ruales, J. Sci. Food Agric. (2018). https://doi.org/10.1002/jsfa.8675

    Article  PubMed  Google Scholar 

  41. D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, Food Chem. (2010). https://doi.org/10.1016/j.foodchem.2009.10.030

    Article  Google Scholar 

  42. M. Friedman, H.S. Jürgens, J. Agric. Food Chem (2000) https://doi.org/https://doi.org/10.1021/JF990489J

  43. Y.-Z. Cai, M. Sun, J. Xing, Q. Luo, H. Corke, Life Sci. (2006). https://doi.org/10.1016/j.lfs.2005.11.004

    Article  PubMed  Google Scholar 

  44. E.A. Koehnlein, E.M. Koehnlein, R.C.G. Corrêa, V.S. Nishida, V.G. Correa, A. Bracht, R.M. Peralta, Int. J. Food Sci. Nutr. (2016). https://doi.org/10.1080/09637486.2016.1186156

    Article  PubMed  Google Scholar 

  45. L. Shafizadeh, M. Golestan, P. Ahmadi, A. Darjani, G.-H. Saraei, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00437-w

    Article  Google Scholar 

  46. W.A. Khan, M.S. Butt, I. Pasha, A. Jamil, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00366-3

    Article  Google Scholar 

  47. K. Oehlke, M. Adamiuk, D. Behsnilian, V. Gräf, E. Mayer-Miebach, E. Walz, R. Greiner, Food Funct. (2014). https://doi.org/10.1039/c3fo60067j

    Article  PubMed  Google Scholar 

  48. P.B. Kajjari, L.S. Manjeshwar, T.M. Aminabhavi, J. Ind. Eng. Chem. (2014). https://doi.org/10.1016/j.jiec.2013.04.034

    Article  Google Scholar 

  49. F. Pinto, D.P. Barros, C. Reis, L.P. Fonseca, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111468

    Article  Google Scholar 

  50. A. Mouri, O. Diat, D.A. Lerner, A. El Ghzaoui, A. Ajovalasit, C. Dorandeu, J-C. Maurel, J-M. Devoissele, P. Legrand, Int J Pharm. (2014) https://doi.org/https://doi.org/10.1016/j.ijpharm.2014.07.018

  51. E. Assadpour, Y. Maghsoudlou, S.-M. Jafari, M. Ghorbani, M. Aalami, Food Bioprocess Tech. (2016). https://doi.org/10.1007/s11947-016-1786-y

    Article  Google Scholar 

  52. L. Svečnjak, G. Baranović, M. Vinceković, S. Prđun, D. Bubalo, I.T. Gajger, J. Apic. Sci. (2015). https://doi.org/10.1515/jas-2015-0018

    Article  Google Scholar 

  53. Z.-P. Liu, Y.-Y. Zhang, D.-G. Yu, D. Wu, H.-L. Li, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2017.10.098

    Article  Google Scholar 

  54. K. Istenič, R. Cerc Korošec, N. Poklar Ulrih, J. Sci. Food Agric. (2016) https://doi.org/10.1002/jsfa.7691

  55. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introdução à Espectroscopia, 5th edn. (Cengage, Boston, 2016).

    Google Scholar 

  56. V. Đorđević, B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, I. Kostić, D. Komes, B. Bugarski, V. Nedović, Food Eng. Rev. (2015). https://doi.org/10.1007/s12393-014-9106-7

    Article  Google Scholar 

  57. M. Gómez-Juaristi, S. Martínez-López, B. Sarria, L. Bravo, R. Mateos, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.08.003

    Article  PubMed  Google Scholar 

  58. L.M. Vieitez, I. Jachmanián, S. Alborés, J. Superc. Fluid. (2018). https://doi.org/10.1016/j.supflu.2017.09.025.x

    Article  Google Scholar 

  59. K.P. Burris, P.M. Davidson, C.N. Stewart Jr., F.M. Harte, J Food Sci. (2011). https://doi.org/10.1111/j.1750-3841.2011.02255.x

    Article  PubMed  Google Scholar 

  60. P.T. Kungel, V.G. Correa, R.C. Corrêa, R.A. Peralta, M. Soković, R.C. Calhelha, R.M. Peralta, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.020

    Article  PubMed  Google Scholar 

  61. C. Duan, X. Meng, J. Meng, M.I.H. Khan, L. Dai, A. Khan, L. Dai, A. Khan, X. An, J. Zhang, T. Huq, Y. Ni, J Bioresources Bioprod. (2019). https://doi.org/10.21967/jbb.v4i1.189

    Article  Google Scholar 

  62. S.E. Evivie, G.-C. Huo, J.O. Igene, X. Bian, Food. Nutr Res. (2017). https://doi.org/10.1080/16546628.2017.1318034

    Article  Google Scholar 

  63. R. Anari, R. Amani, M. Veissi, Diabetes Metab Syndr Clin Res Rev. (2017). https://doi.org/10.1016/j.dsx.2017.04.024

    Article  Google Scholar 

  64. R. Codella, L. Luzi, I. Terruzzi, Digest Liver Dis. (2018). https://doi.org/10.1016/j.dld.2017.11.016

    Article  Google Scholar 

  65. A.C. Hoek, D. Pearson, S.W. James, M.A. Lawrence, S. Friel, Food Qual Prefer. (2017). https://doi.org/10.1016/j.foodqual.2016.12.008

    Article  Google Scholar 

  66. C.N. Mhurchu, H. Eyles, Y. Jiang, T. Blakely, Appetite. (2018). https://doi.org/10.1016/j.appet.2017.11.105

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Government of Rio Grande do Sul State for its financial support to the project “Yerba Mate as a Functional Component in the Development of Food Processes and Products” (Process No. 162-16.00/16-2). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cintia Cassia Tonieto Gris or Telma Elita Bertolin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gris, C.C.T., Frota, E.G., Guarienti, C. et al. In vitro digestibility and stability of encapsulated yerba mate extract and its impact on yogurt properties. Food Measure 15, 2000–2009 (2021). https://doi.org/10.1007/s11694-020-00788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00788-4

Keywords

Navigation