Skip to main content
Log in

Microencapsulation and accelerated stability testing of bioactive compounds of Hibiscus sabdariffa

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to encapsulate hibiscus aqueous extract, which has valuable content in anthocyanins with antioxidant activity. For this purpose, assays were realized using whey protein isolate and polydextrose and a mixture of both as carriers by spray-drying and freeze-drying encapsulation. Statistical analysis indicated that the powder containing only polydextrose by freeze-drying presented the best condition of encapsulation, with retentions of phenolic, anthocyanin and antioxidant activity measured by ABTS, DPPH, and HRSA of 86, 77, 76, 90 and 74%, respectively. Accelerated stability tests (75 and 90% relative humidity, at 40 and 60 °C) performed for 30 days in the powders, showed two periods of losses for polyphenols and antioxidant capacity: a significant decrease (p < 0.05) and its posterior stabilization in all storage conditions. In order to predict the degradation kinetic of anthocyanins encapsulated was used the first-order kinetic model, whose degradation rate constants ranged from 0.0259 to 0.2910 d−1, and increased with the temperature and relative humidity, with the Q10 temperature coefficient values from 1.1 to 2.1. FTIR and TGA assays indicated that the encapsulation occurred by physical incorporation, as well as up to 210 °C, powders presented high thermal stability. The results suggested that the powders may be used as a bioactive ingredient due to its high solubility and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Da-Costa-Rocha, B. Bonnlaender, H. Sievers, I. Pischel, M. Heinrich, Food Chem. 165, 424–443 (2014)

    CAS  PubMed  Google Scholar 

  2. A. Formagio, D. Ramos, M. Vieira, S.R. Ramalho, M.M. Silva, N.A.H. Zárate, J.E. Carvalho, Braz. J. Biol. 75, 69–75 (2015)

    CAS  PubMed  Google Scholar 

  3. D.M. Amaya-Cruz, I.F. Perez-Ramirez, D. Ortega-Diaz, M.E. Rodriguez-Garcia, R. Reynoso-Camacho, J. Food Meas. Charact. 12, 135–144 (2018)

    Google Scholar 

  4. I. Borrás-Linares, S. Fernández-Arroyo, D. Arráez-Roman, P.A. Palmeros-Suárez, R. Del Val-Díaz, I. Andrade-Gonzáles, A. Segura-Carretero, Ind. Crops Prod. 69, 385–394 (2015)

    Google Scholar 

  5. J. Sang, Q. Ma, M. Ren, S. He, D. Feng, X. Yan, C. Li, J. Food Meas. Charact. 12, 937–948 (2018)

    Google Scholar 

  6. B. Ling, J. Tang, F. Kong, E.J. Mitcham, S. Wang, Food Bioprocess Technol. 8, 343–358 (2015)

    CAS  Google Scholar 

  7. L.S. Kuck, J.L. Wesolowski, C.P.Z. Noreña, Food Chem. 230, 257–264 (2017)

    CAS  PubMed  Google Scholar 

  8. S. Gonzalez-Palomares, M. Estarrón-Espinosa, J.F. Gómez-Leyva, I. Andrade-González, Plant Food Hum. Nutr. 64, 62–67 (2009)

    Google Scholar 

  9. Z. Idham, I.I. Muhamad, M.R. Sarmidi, J. Food Process Eng. 35, 522–542 (2012)

    CAS  Google Scholar 

  10. A. Piovesana, C.P.Z. Noreña, Int. J. Food Eng. 4, 1–9 (2018)

    Google Scholar 

  11. S. Darniadi, I. Ifie, P. Ho, B.S. Murray, J. Food Meas. Charact. 13, 1599–1606 (2019)

    Google Scholar 

  12. L.S. Kuck, C.P.Z. Noreña, Food Chem. 194, 569–576 (2016)

    CAS  PubMed  Google Scholar 

  13. D.A. Popović, D.D. Milinčić, M.B. Pešić, A.M. Kalušević, Ž.L. Tešić, V.A. Nedović, Elsevier (2019)

  14. C.B. Ahn, Y.S. Cho, J.Y. Je, Food Chem. 168, 151–156 (2015)

    CAS  PubMed  Google Scholar 

  15. R.T. Rigon, C.P.Z. Noreña, J. Food Sci. Technol. 53, 1515–1524 (2016)

    CAS  PubMed  Google Scholar 

  16. M.H. Auerbach, S.A.S. Craig, J.F. Howlett, K.C. Hayes, Nutr. Rev. 65, 544–549 (2007)

    PubMed  Google Scholar 

  17. S. Hull, R. Re, K. Tiihonen, L. Viscione, M. Wickham, Appetite. 59, 706–712 (2012)

    CAS  PubMed  Google Scholar 

  18. S.J. Lahtinen, K. Knoblock, A. Drakoularakou, M. Jacob, J. Stowell, G.R. Gibson, A.C. Ouwehand, Biosci. Biotechnol. Biochem. 74, 2016–2021 (2010)

    CAS  PubMed  Google Scholar 

  19. H.A. Al-Kahtani, B.H. Hassan, J. Food Sci. 55, 1073–1076 (1990)

    Google Scholar 

  20. K. Duangmal, B. Saicheua, S. Sueeprasan, LWT-Food. Sci. Technol. 41, 1437–1445 (2008)

    CAS  Google Scholar 

  21. G. Gradinaru, C.G. Biliaderis, S. Kallithraka, P. Kefalas, C. Garcia-Viguera, Food Chem. 83, 423–436 (2003)

    CAS  Google Scholar 

  22. L. Cassol, E. Rodrigues, C.P.Z. Noreña, Ind. Crops Prod. 133, 168–177 (2019)

    CAS  Google Scholar 

  23. R.V. Tonon, C. Brabet, M.D. Hubinger, Food Res. Int. 43, 907–914 (2008)

    Google Scholar 

  24. P. Robert, T. Gorena, N. Romero, E. Sepulveda, J. Chavez, C. Saen, Int. J. Food Sci. Technol. 45, 1386–1394 (2010)

    CAS  Google Scholar 

  25. D.H. Lee, F.J. Francis, HortScience. Stanford. 7, 83–84 (1972)

    Google Scholar 

  26. V.L. Singleton, J.A. Rossi, Am. J. Enol. Viticult. 16, 144–158 (1965)

    CAS  Google Scholar 

  27. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)

    CAS  PubMed  Google Scholar 

  28. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Sci. Technol. 28, 25–30 (1995)

    CAS  Google Scholar 

  29. J.F. Meng, Y.L. Fang, M.Y. Qin, X.F. Zhuang, Z.W. Zhang, Food Chem. 134, 2049–2056 (2012)

    CAS  PubMed  Google Scholar 

  30. C.C. Ferrari, S.P.M. Germer, J.M. Aguirre, Dry. Technol. 30, 154–163 (2012)

    CAS  Google Scholar 

  31. Y.I. Maldonado-Astudillo, J. Jiménez-Hernández, G. Arámbula-Villa, V. Flores-Casamayor, P. Álvarez-Fitz, M. Ramírez-Ruano, R. Salazar, J. Food Meas. Charact. 13, 687–696 (2019)

    Google Scholar 

  32. S.Y. Hundre, P. Karthik, C. Anandharamakrishnan, Food Chem. 174, 16–24 (2015)

    CAS  PubMed  Google Scholar 

  33. P.N. Ezhilarasi, D. Indrani, B.S. Jena, C. Anandharamakrishnan, J. Food Eng. 117, 513–520 (2013)

    CAS  Google Scholar 

  34. C.E. Lupano, Food Res. Int. 33, 691–696 (2000)

    CAS  Google Scholar 

  35. P. Tsai, H. Huang, Food Res. Int. 37, 313–318 (2004)

    CAS  Google Scholar 

  36. Q. Chang, Z. Zuo, M.S.S. Chow, W.K.K. Ho, Food Chem. 98, 426–430 (2006)

    CAS  Google Scholar 

  37. C. Thongkaew, M. Gibis, J. Hinrichs, J. Weiss, Food Hydrocolloid. 41, 103–112 (2014)

    CAS  Google Scholar 

  38. C. Le Bourvellec, C.M.G.C. Renard, Crit. Rev. Food Sci. Nutr. 52, 213–248 (2012)

    PubMed  Google Scholar 

  39. B. Shah, S. Ikeda, P.M. Davidson, Q. Zhong, J. Food Eng. 113, 79–86 (2012)

    CAS  Google Scholar 

  40. K.S. Sonu, M. Bimlesh, S. Rajan, K. Rajesh, Res. Rev. J. Food Dairy Technol. 5, 7–16 (2017)

    CAS  Google Scholar 

  41. Z. Jia, M. Dumont, V. Orsat, Food Biosci. 15, 87–104 (2016)

    CAS  Google Scholar 

  42. L.F. Ballesteros, M.J. Ramirez, C.E. Orrego, J.A. Teixeira, S.I. Mussatto, Food Chem. 237, 623–631 (2017)

    CAS  PubMed  Google Scholar 

  43. Y. Jafari, H. Sabahi, M. Rahaie, Food Chem. 211, 700–706 (2016)

    CAS  PubMed  Google Scholar 

  44. L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeira, S.I. Mussatto, Carbohydr. Polym. 127, 347–354 (2015)

    CAS  PubMed  Google Scholar 

  45. A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, M. Imamoglu, Y. Onal, J. Anal. Appl. Pyrolysis. 104, 249–259 (2013)

    CAS  Google Scholar 

  46. S.C.S.R. Moura, C.L. Berling, S.P.M. Germer, I.D. Alvim, M.D. Hubinger, Food Chem. 241, 317–327 (2018)

    PubMed  Google Scholar 

  47. E. Jouenne, J. Crouzet, J. Agric. Food Chem. 48, 5396–5400 (2000)

    CAS  PubMed  Google Scholar 

  48. W. Wang, Y. Jiang, W. Zhou, J. Food Eng. 119, 724–730 (2013)

    CAS  Google Scholar 

  49. M.J. Ramírez, G.I. Giraldo, C.E. Orrego, Powder Technol. 277, 89–96 (2015)

    Google Scholar 

  50. K.M. Khazaei, S.M. Jafari, M. Ghorbani, A.H. Kakhki, Carbohydr. Polym. 105, 57–62 (2014)

    Google Scholar 

  51. C. Anandharamakrishnan, C.D. Rielly, A.G.F. Stapley, Dairy. Sci Technol. 90, 321–334 (2010)

    CAS  Google Scholar 

  52. H.C. Liu, W.L. Chen, S.J.T. Mao, J. Dairy Sci. 90, 547–555 (2007)

    CAS  PubMed  Google Scholar 

  53. E. Sadilova, R. Carle, F.C. Stintzing, Mol. Nutr. Food Res. 51, 1461–1471 (2007)

    CAS  PubMed  Google Scholar 

  54. Y. Zhang, J. Sang, F. Chen, J. Sang, C. Li, J. Food Meas. Charact. 12, 2475–2483 (2018)

    Google Scholar 

Download references

Acknowledgment

The authors thank FAPERGS, CAPES, and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caciano Pelayo Zapata Noreña.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassol, L., Noreña, C.P.Z. Microencapsulation and accelerated stability testing of bioactive compounds of Hibiscus sabdariffa. Food Measure 15, 1599–1610 (2021). https://doi.org/10.1007/s11694-020-00757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00757-x

Keywords

Navigation