Skip to main content
Log in

Investigating the influence of pH and selected heating media on thermal destruction kinetics of Geobacillus stearothermophilus (ATCC10149)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Geobacillus stearothermophilus is a thermophilic spore-forming bacterium which is used for intense thermal process validations (10 min–15 min). Several factors including the pH and heating medium influence the heat resistance of such microbial spores. In this study, the influence of using different buffer types including McIlvaine and phosphate was compared to distilled water at pH 7. Also, the effect of pH variations was studied using McIlvaine buffer at pH 3, 4, 5, 6, 7, and 8. All kinetics studies were conducted at 110 to 120 (°C). Results showed higher heat sensitivity (higher Z value) in distilled water (8.27 °C) than in phosphate (9.21 °C) and McIlvaine buffers (9.59 °C); likely being influenced by the high percentage of inorganic salts present in these buffers. The spores had the highest heat resistance at neutral pH, and the associated D values decreased both below and above pH 7.0. The pH effect on enhancing the heat sensitivity was higher at 110 °C, but the overall temperature influence was not significantly different (p > 0.05). Further, both first-order and Weibull models were compared for thermal destruction kinetics of G. stearothermophilus. Results demonstrated some concavity in the log-linear survival curves suggesting a slightly better fit for the Weibull model in some cases, but the model did not show any better prediction than the first-order model for a 3D lethality (Fo) value of 15 min. The combined effect of pH and temperature also showed cubic trends, and the Ea ranged between 240 and 398 (kJ) at pH 4–7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Richardson, Thermal technologies in food processing (Woodhead Publishing Limited, Cambdrige, 2001)

    Book  Google Scholar 

  2. C.R. Stumbo, Thermobacteriology in food processing (Academic Press, New York, 1973)

    Google Scholar 

  3. Y. Shao, H.S. Ramaswamy, Clostridium sporogenes-ATCC 7955 spore destruction kinetics in milk under high pressure and elevated temperature treatment conditions. Food Bioprocess. Tech. 4(3), 458–468 (2011)

    Article  Google Scholar 

  4. H.F. Hassan, H.S. Ramaswamy, Heat resistance of G. stearothermophilus and C. sporogenes in carrot and meat alginate purees. J. Food Process. Preserv. 35(3), 376–385 (2011)

    Article  Google Scholar 

  5. A.A. Ghani, M.M. Farid, X.D. Chen, Theoretical and experimental investigation of the thermal inactivation of Bacillus stearothermophilus in food pouches. J. Food Eng. 51(3), 221–228 (2002)

    Article  Google Scholar 

  6. T. Watanabe, S. Furukawa, J. Hirata, T. Koyama, H. Ogihara, M. Yamasaki, Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Appl. Environ. Microbiol. 69(12), 7124–7129 (2003)

    Article  CAS  Google Scholar 

  7. H. Vatankhah, N. Zamindar, M.S. Baghekhandan, Heat transfer simulation and retort program adjustment for thermal processing of wheat-based Haleem in semi-rigid aluminum containers. J. Food Sci. Tech. 52(10), 6798–6803 (2015)

    Article  CAS  Google Scholar 

  8. H. Vatankhah, N. Zamindar, M.S. Shahedi, Geometry simplification of wrinkled wall semi-rigid aluminum containers in heat transfer simulation. J. Agric. Sci. Tech. 18(1), 123–133 (2016)

    Google Scholar 

  9. A. Kacar, S. Avunduk, B. Omuzbuken, E. Aykin, Biocidal activities of a triterpenoid saponin and flavonoid extracts from the Erica manipuliflora salisb. Against microfouling bacteria. Int. J. Agric For. and Life Sci. 2(2), 40–46 (2018)

    Google Scholar 

  10. J.M. Jay, High-temperature food preservation and characteristics of thermophilic microorganisms. Modern Food Microbiology. 6th edn., (Aspen Publishers, Gaithersburg, 2000), pp. 341–362

    Chapter  Google Scholar 

  11. H.W. Walker, Influence of buffers and pH on the thermal destruction of spores of Bacillus megaterium and Bacillus polymyxaa. J. Food Sci. 29(3), 360–365 (1964)

    Article  CAS  Google Scholar 

  12. P.M. Periago, P.S. Fernández, M.C. Salmerón, A. Martınez, Predictive model to describe the combined effect of pH and NaCl on apparent heat resistance of Bacillus stearothermophilus. Int. J. Food Microbiol. 44(1), 21–30 (1998)

    Article  CAS  Google Scholar 

  13. M. López, I. González, S. Condon, A. Bernardo, Effect of pH heating medium on the thermal resistance of Bacillus stearothermophilus spores. Int. J. Food Microbiol. 28(3), 405–410 (1996)

    Article  Google Scholar 

  14. F. Rodrigo, C. Rodrigo, P.S. Fernandez, M. Rodrigo, A. Martınez, Effect of acidification and oil on the thermal resistance of Bacillus stearothermophilus spores heated in food substrate. Int. J. Food Microbiol. 52(3), 197–201 (1999)

    Article  CAS  Google Scholar 

  15. J. Iciek, I. Błaszczyk, A. Papiewska, The effect of organic acid type on thermal inactivation of Geobacillus stearothermophilus spores. J. Food Eng. 87(1), 16–20 (2008)

    Article  Google Scholar 

  16. M.H. Wells-Bennik, P.W. Janssen, V. Klaus, C. Yang, M.H. Zwietering, H.M. Den, Besten, Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int. J. Food Microbiol. 291, 161–172 (2019)

    Article  CAS  Google Scholar 

  17. P.S. Fernandez, M.J. Ocio, F. Rodrigo, M. Rodrigo, A. Martinez, Mathematical model for the combined effect of temperature and pH on the thermal resistance of Bacillus stearothermophilus and Clostridium sporogenes spores. Int. J. Food Microbiol. 32(1), 225–233 (1996)

    Article  CAS  Google Scholar 

  18. D.J. Lynch, N.N. Potter, Effects of organic acids on thermal inactivation of Bacillus stearothermophilus and Bacillus coagulans spores in frankfurter emulsion slurry. J. Food Prot. 51(6), 475–480 (1988)

    Article  CAS  Google Scholar 

  19. N. Finley, M.L. Fields, Heat activation and heat-induced dormancy of Bacillus stearothermophilus spores. Appl. Microbiol. 10(3), 231–236 (1962)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Li, X. Kou, L. Zhang, S. Wang, Inactivation kinetics of food-borne pathogens subjected to thermal treatments: a review. Int. J. Hyperther. 34(2), 177–188 (2018)

    Article  Google Scholar 

  21. M.A. van Boekel, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74(1), 139–159 (2002)

    Article  Google Scholar 

  22. H.S. Ramaswamy, M. Marcotte, Thermal processing. Food processing: principles and applications. (CRC Press, Boca Raton, 2005), pp. 68–168

    Chapter  Google Scholar 

  23. R. Xiong, G. Xie, A.E. Edmondson, M.A. Sheard, A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46(1), 45–55 (1999)

    Article  CAS  Google Scholar 

  24. M. Peleg, M.B. Cole, Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 38(5), 353–380 (1998)

    Article  CAS  Google Scholar 

  25. A. Fernandez, C. Salmeron, P.S. Fernández, A. Martınez, Application of a frequency distribution model to describe the thermal inactivation of two strains of Bacillus cereus. Trends Food Sci. Technol. 10(4), 158–162 (1999) (1999)

    Article  CAS  Google Scholar 

  26. H. Chen, Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiol. 24(3), 197–204 (2007)

    Article  Google Scholar 

  27. J.U.H.E.E. Kim, H.B. Naylor, Spore production by Bacillus stearothermophilus.. Appl. Microbiol. 14(4), 690 (1966)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. T.C. McIlvaine, A buffer solution for colorimetric comparison. J. Biol. Chem. 49(1), 183–186 (1921)

    CAS  Google Scholar 

  29. L. Durand, S. Planchon, M.H. Guinebretiere, F. Carlin, F. Remize, Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus. Food Microbiol. 45, 103–110 (2015)

    Article  CAS  Google Scholar 

  30. J. Maindonald, J. Braun, Data analysis and graphics using R: an example-based approach, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  31. T.N. Nazina, T.P. Tourova, A.B. Poltaraus, E.V. Novikova, A.A. Grigoryan, A.E. Ivanova, A.M. Lysenko, V.V. Perunyaka, G.A. Osipov, S.S. Belyaev, M.V. Ivanov, Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus. Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int. J. Syst. Evol. Microbiol. 51(2), 433–446 (2001)

    Article  CAS  Google Scholar 

  32. P.T. Ting, A. Freiman The story of Clostridium botulinum: from food poisoning to Botox. Clin. Med. 4(3), 258–261 (2004)

    Article  Google Scholar 

  33. E. Patazca, T. Koutchma, H.S. Ramaswamy, Inactivation kinetics of Geobacillus stearothermophilus spores in water using high-pressure processing at elevated temperatures. J. Food Sci. 71(3), M110–M116 (2006)

    Article  CAS  Google Scholar 

  34. A.H. Geeraerd, V.P. Valdramidis, J.F. Van Impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 102(1), 95–105 (2005)

    Article  CAS  Google Scholar 

  35. G. Stone, B. Chapman, D. Lovell, Development of a log-quadratic model to describe microbial inactivation, illustrated by thermal inactivation of Clostridium botulinum. Appl. Environ. Microbiol. 75(22), 6998–7005 (2009)

    Article  CAS  Google Scholar 

  36. S. Buzrul, H. Alpas, Modeling inactivation kinetics of food borne pathogens at a constant temperature. LWT Food Sci. Technol. 40(4), 632–637 (2007)

    Article  CAS  Google Scholar 

  37. A. Fernandez, J. Collado, L.M. Cunha, M.J. Ocio, A. Martınez, Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. Int. J. Food Microbiol. 77(1–2), 147–153 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Discovery Grant from the Natural Sciences and Engineering Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosahalli S. Ramaswamy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaswamy, H.S., Xu, M. & Vatankhah, H. Investigating the influence of pH and selected heating media on thermal destruction kinetics of Geobacillus stearothermophilus (ATCC10149). Food Measure 13, 1310–1322 (2019). https://doi.org/10.1007/s11694-019-00046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00046-2

Keywords

Navigation