Skip to main content
Log in

Evaluation of in vitro antioxidant and brine shrimp lethality activities of different stem extracts of Zizyphus rugosa Lam

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Zizyphus rugosa Lam (Z. rugosa Lam) (Family: Rhamnaceae), has been regarded as a food and medicinal plant. It is locally known as “Bon Boroi” or as “Jongli Boroi” in Bangladesh. Its stem, roots and fruits are used medicinally for the treatment of carbuncle, syphilis, menorrhea, and ulcer tongue. It is also used for dysentery in Laos, Burma, Thailand, China (Hainan, Yunnan), Sri-Lanka and Vietnam. The present study was designed to investigate antioxidant properties (through in vitro method) as well as brine shrimp lethality and phytochemical group evaluation of stem part of Z. rugosa Lam extracted with different solvents i.e. from non polar to polar (petroleum ether > ethyl acetate > ethanol > methanol > water). Phytochemical investigation showed the presence of alkaloids, flavonoid, glycosides and carbohydrates which provides evidence on good to moderate antioxidant and good lethality properties of the subjected plant. Ethyl acetate extract of stem was found to contain the highest amount of phenols (97.188 ± 12.816 mg/g gallic acid equivalent) and flavonoids (15.009 ± 0.385 mg/g quercetin equivalent). In 2,2-diphenyl,1-picrylhydrazyl (DPPH) free radical scavenging assay, among all the extracts ethanolic stem extract showed the highest scavenging property (IC50 83.550 µg/ml) whereas standard drug ascorbic acid showed (IC50 18.348 µg/ml). But in nitric oxide (NO) scavenging assay maximum scavenging of NO was found with water extract of stem (IC50 5.975 μg/ml) comparatively similar to standard ascorbic acid (IC50 5.934 μg/ml). Methanolic stem extract was found to contain the greater reducing power in reducing power capacity assessment (correlation coefficient r = 0.99 and P < 0.001). In brine shrimp lethality bioassay (BSLB) among all extracts, ZSM part showed good activity (LC50 40.43 μg/ml) whereas standard anticancer drug vincristine sulphate showed high toxicity (LC50 2.48 μg/ml). The overall findings provide scientific basis for the use of Z. rugosa Lam stem extracts in traditional medicine in the treatment of aforementioned diseases. Hence, the stem may serve as a new potential source of medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. W. Sneader, Drug prototypes and their exploitation (Wiley, UK., 1996)

    Google Scholar 

  2. J. Clardy, C. Walsh, Nature 432(7019), 829–837 (2004)

    Article  CAS  Google Scholar 

  3. F.E. Koehn, G.T. Carter, Nat. Rev. Drug Discov. 4(3), 206–220 (2005)

    Article  CAS  Google Scholar 

  4. M.S. Butler, Nat. Prod. Rep. 25, 475–516 (2008)

    Article  CAS  Google Scholar 

  5. Ghani A. Medicinal Plants of Bangladesh. 2nd edn. (The Asiatic Society of Bangladesh. Dhaka, Bangladesh, 2003), pp. 31, 39-40, 418, 500-504, 589-580

  6. K.R. Kirtikar, B.D. Basu, E. Blatter, J.F. Cains, K.S. Mhaskar, Indian medicinal plants, vol. 1 (Lalit Mohan Basu, Allahabad, India, 1975), p. 594

    Google Scholar 

  7. Dinesh Kumar Tyagi, Pharma forestry. Field guide to medicinal plants (Atlantic Publishers and Distributors, New Delhi, 2005), p. 147

    Google Scholar 

  8. A. Singh, M.B. Pandey, S. Singh, A.K. Singh, J.P. Singh, J. Indian Chem. Soc. 86(2), 177–178 (2009)

    CAS  Google Scholar 

  9. C.P. Khare, C.P. Khare, Indian medicinal plants: an illustrated dictionary (Springer Verlag, Berlin, 2007), p. 737

    Google Scholar 

  10. R.J.P. Cannel, How to approach the isolation of a natural product, in natural products isolation, 1st edn. (Humana Press, New Jersey, 1998), pp. 1–51

    Google Scholar 

  11. Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, J. Agric. Food Chem. 46, 4113–4117 (1998)

    Article  CAS  Google Scholar 

  12. L. Yu, J. Agric. Food Chem. 49, 3452–3456 (2001)

    Article  CAS  Google Scholar 

  13. S.Y. Wang, H. Jiao, J. Agric. Food Chem. 48, 5672–5676 (2000)

    Article  Google Scholar 

  14. P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. 269, 337–341 (1999)

    Article  CAS  Google Scholar 

  15. A. Braca, N.D. Tommasi, L.D. Bari, C. Pizza, M. Politi, I. Morelli, J. Nat. Prod. 64, 892–895 (2001)

    Article  CAS  Google Scholar 

  16. R. Govindarajan, S. Rastogi, M. Vijayakumar, A. Shirwaikar, A.K.S. Rawat, S. Mehrotra, P. Palpu, Biol. Pharm. Bull. 26, 1424–1427 (2003)

    Article  CAS  Google Scholar 

  17. M. Oyaizu, Jpn. J. Nutr. 44, 307–315 (1986)

    Article  CAS  Google Scholar 

  18. A. Resat, G. Kubilay, O. Mustafa, E.K. Saliha, J. Agric. Food Chem. 52, 7970–7981 (2004)

    Article  Google Scholar 

  19. Fazel Shami, Hamidreza Monsef, Rouhollah Ghamooshi, M. Verdian-Ariza, J. Pharma. Sci. 32 , 17-20 (2008)

    CAS  Google Scholar 

  20. B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, Planta Med. 45, 31–34 (1982)

    Article  CAS  Google Scholar 

  21. X.D. Luo, S.H. Wu, Y.B. Ma, D.G. Wu, Fitoterapia 71(5), 492–496 (2000)

    Article  CAS  Google Scholar 

  22. J.L. Mclaughlin, J.E. Anderson, L.L. Rogers, Drug Info. J. 32, 513–524 (1998)

    Google Scholar 

  23. W.S. Abott, J. Am. Mosq. Control Assoc. 3(2), 302–303 (1987)

    Google Scholar 

  24. A. Yildirim, A. Mavi, M. Oktay, A.A. Kara, J. Agric. Food Chem. 48, 5030–5034 (2000)

    Article  CAS  Google Scholar 

  25. Y.C. Tripathi, S.K. Maurye, V.P. Singh, V.B. Pandey, Phytochemistry 28(5), 1563 (1986)

    Article  Google Scholar 

  26. V.B. Pandey, Y.C. Tripathi, S. Devi, J.P. Singh, A.H. Shah, Phytochemistry 27(6), 1915–1918 (1988)

    Article  CAS  Google Scholar 

  27. Y.C. Tripathi, S. Devi, V.B. Pandey, A.H. Shah, Fitoterapia 59(2), 158 (1988)

    Google Scholar 

  28. V.B. Pandey, Y.C. Tripathi, Fitoterapia 64(4), 341–343 (1993)

    CAS  Google Scholar 

  29. C. Rice-Evans, N. Miller, G. Paganga, Trends Plant Sci. 2, 152–159 (1997)

    Article  Google Scholar 

  30. J. Moline, I.F. Bukharovich, M.S. Wolff, Med. Hypoth. 55(4), 306–309 (2000)

    Article  CAS  Google Scholar 

  31. Y. Arai, S. Wantanabe, M. Kimira, K. Shimoi, Am. Soc. Nutr. Sci. 130(9), 2243–2250 (2000)

    CAS  Google Scholar 

  32. G.G. Duthie, S.J. Duthei, J.A.M. Kyle, Nutr. Res. Rev. 13, 79–106 (2000)

    Article  CAS  Google Scholar 

  33. W. Zheng, Y.S. Wang, J. Agric. Food Chem. 49, 5165–5170 (2001)

    Article  CAS  Google Scholar 

  34. O. Benavente-Garcia, J. Castillo, F.R. Marin, A. Ortuño, J.A. Del-Rio, J. Agric. Food Chem. 45, 4505–4515 (1997)

    Article  CAS  Google Scholar 

  35. M. Oktay, I. Gulcin, O.I. Kufrevioglu, LWT 36, 263–271 (2003)

    Article  CAS  Google Scholar 

  36. M.E.H. Mazumder, S. Rahman, Pharm. Biol. 46(10), 704–709 (2008)

    Article  CAS  Google Scholar 

  37. W. Brand-Willams, M.E. Cuvelier, C. Berset, LWT 28, 25–30 (1995)

    Article  Google Scholar 

  38. J.C. Espin, C. Soler-Rivas, H.J. Wichers, J. Agric. Food Chem. 48, 648–656 (2000)

    Article  CAS  Google Scholar 

  39. R.J. Ruch et al., Carcinogenesis 10, 1003–1008 (1989)

    Article  CAS  Google Scholar 

  40. R. Radi, J.S. Beckman, K.M. Bush, B.A. Freeman, J. Biol. Chem. 266, 4244–4250 (1991)

    CAS  Google Scholar 

  41. S. Moncada, R.M. Palmer, E.A. Higgs, Pharmacol. Rev. 43, 109–142 (1991)

    CAS  Google Scholar 

  42. J.S. Beckman, T.W. Beckman, J. Chen, P.A. Marshall, B.A. Freeman, Proc. Nat. Acad. Sci. USA 87, 1620–1623 (1990)

    Article  CAS  Google Scholar 

  43. K. Shimada, K. Fujukawa, K. Yahara, T. Nakamura, J. Agric, Food Chem. 40, 945–948 (1992)

    Article  CAS  Google Scholar 

  44. M. Tanaka, C.W. Kuei, Y. Nagashima, T. Taguchi, Nippon Suisan Gakkaishi 54, 1409–1414 (1998)

    Article  Google Scholar 

  45. B. Ozcelik, M. Kartal, I. Orhan, Pharm. Biol. 9(4), 396–402 (2011)

    Article  Google Scholar 

  46. M.L. Dhar, M.N. Dhar, B.N. Dhawan, Ind. J. Expt. Biol. 11, 43–45 (1973)

    CAS  Google Scholar 

  47. P. Vijayan, V. Rreethi, S.H. Prashanth, H. Raghu, Biol. Pharm. Bull. 24, 528–530 (2004)

    Article  Google Scholar 

  48. S. Badami, S.A. Manohara, E.P. Kumar, Phytother. Res. 17, 1001–1004 (2003)

    Article  Google Scholar 

  49. C.C. Chang, M.H. Yang, H.M. Wen, J.C.J. Chern, Food Drug Anal. 10, 178–182 (2002)

    CAS  Google Scholar 

Download references

Acknowledgments

We are greatly thankful to Laboratory of Natural Products Research (LNPR), Department of Pharmacy, Jahangirnagar University to provide sufficient laboratory facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Sazzad Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Uddin, N., Islam, A.F.M.M. et al. Evaluation of in vitro antioxidant and brine shrimp lethality activities of different stem extracts of Zizyphus rugosa Lam. Food Measure 9, 454–462 (2015). https://doi.org/10.1007/s11694-015-9253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9253-4

Keywords

Navigation