Skip to main content
Log in

Use of spectroscopic data for automation in food processing industry

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Advances in spectroscopy now enable researchers to obtain information about chemical and physical components in food or biological materials at the molecular level. Various spectroscopic techniques (e.g., atomic absorption spectroscopy, Raman and Fourier-transform infrared spectroscopy, near infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectroscopy, X-ray fluorescence spectroscopy, ultra-violet spectroscopy) have been used to study structure-function relationships in foods (both liquid and solid) to improve overall food quality, safety and sensory characteristics; to investigate fungal infections in plant materials (e.g., fruits, seeds); or to study mobility of different chemical components in food materials. Processing, analyzing, and displaying these data can often be difficult, time-consuming, and problem-specific. Chemometrics is well established for calibrating the spectral data to predict concentrations of constituents of interest. Similarly, proteomics deals with the structure-function relationship of proteins. Since most of the food processing industries are becoming increasingly automated, there is a need to understand how the spectroscopic data can be used for automation. In this paper, we have provided basic working principles of the above mentioned spectroscopic techniques, examples of the use of spectral data in food processing, methods of analysis of spectral data and their integration in the automation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.R. Harrison, J. Food Sci. 3, 121 (1938). doi:10.1111/j.1365-2621.1938.tb17043.x

    Article  CAS  Google Scholar 

  2. T. Woodcock, G. Downey, C.P. O’Donnell, J. Near Infrared Spec. 16, 1 (2008)

    Article  CAS  Google Scholar 

  3. W. Slavin, Appl. Spectrosc. 20, 281 (1966). doi:10.1366/000370266774385787

    Article  CAS  Google Scholar 

  4. B.G. Osborne, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, NY, 2000), p. 1

  5. W. Wang, J. Paliwal, Sens. Instr. Food Qual. 1, 193 (2007). doi:10.1007/s11694-007-9022-0

    Article  Google Scholar 

  6. S.C.C. Wiedemann, W.G. Hansen, M. Snieder, V.A.L. Wortel, Analusis Mag. 26, M38 (1998). doi:10.1051/analusis:199826040038

    Article  CAS  Google Scholar 

  7. R.L. Wehling, in Food Analysis, ed. by S.S. Nielsen (Springer, New York, NY, 2003), p. 387

    Google Scholar 

  8. J.J. Workman, Appl. Spectrosc. Rev. 31, 251 (1996). doi:10.1080/05704929608000571

    Article  CAS  Google Scholar 

  9. R.H. Wilson, H.S. Tapp, Trends Anal. Chem. 18, 85 (1999). doi:10.1016/S0165-9936(98)00107-1

    Article  CAS  Google Scholar 

  10. E.C.Y. Li-Chan, Trends Food Sci. Technol. 7, 361 (1996). doi:10.1016/S0924-2244(96)10037-6

    Article  CAS  Google Scholar 

  11. Y. Ozaki, in Spectral Methods in Food Analysis, ed. by M.M. Mossoba (Marcel Dekker, Inc., New York, NY, 1999), p. 427

    Google Scholar 

  12. G.W. Schrader, J.B. Litchfield, S.J. Schimdt, Food Technol. Dec., 77 (1992)

  13. S.J. Schmidt, X. Sun, J.B. Litchfield, Crit. Rev. Food Sci. Nutr. 36, 357 (1996)

    Article  CAS  Google Scholar 

  14. M.H. Penner, in Food Analysis, ed. by S.S. Nielsen (Springer, New York, NY, 2003), p. 371

    Google Scholar 

  15. G.M. Strasburg, R.D. Ludescher, Trends Food Sci. Technol. 6, 69 (1995). doi:10.1016/S0924-2244(00)88966-9

    Article  CAS  Google Scholar 

  16. J. Christensen, A.M. Ladefoged, L. Nørgaard, J. Inst. Brewing 111, 3 (2005)

    Google Scholar 

  17. E. Sikorska, I.V. Khemelinskii, M. Sikorski, F. Caponio, M.T. Bilancia, A. Pasqualone, T. Gomes, Int. J. Food Sci. Technol. 43, 52 (2008)

    Article  CAS  Google Scholar 

  18. M. Carbonaro, Trends Food Sci. Technol. 15, 209 (2004)

    Article  CAS  Google Scholar 

  19. J.S. Smith, R.A. Thakur, in Food Analysis, ed. by S.S. Nielsen (Springer, New York, NY, 2003), p. 423

    Google Scholar 

  20. A. De Leonardis, V. Macciola, M. De Felice, Int. J. Food Sci. Technol. 35, 371 (2000). doi:10.1046/j.1365-2621.2000.00389.x

    Article  Google Scholar 

  21. A. Celedόn, J.M. Aguilera, Food Sci. Technol. Int. 8, 101 (2002). doi:10.1177/1082013202008002208

    Article  Google Scholar 

  22. S. Keller, T. LiJchte, B. Dippel, B. Schrader, Fresenius J. Anal. Chem. 346, 863 (1993). doi:10.1007/BF00321306

    Article  CAS  Google Scholar 

  23. P. Chen, M.J. McCarthy, R. Kauten, Trans. ASAE 32, 1747 (1989)

    Google Scholar 

  24. M.J. McCarthy, R.J. Kauten, Trends Food Sci. Technol. Dec., 134 (1990)

  25. C. Simoneau, M.J. McCarthy, J.B. German, Food Res. Int. 26, 387 (1993). doi:10.1016/0963-9969(93)90082-T

    Article  CAS  Google Scholar 

  26. M.J. McCarthy, K.L. McCarthy, J. Sci. Food Agric. 65, 257 (1994). doi:10.1002/jsfa.2740650302

    Article  Google Scholar 

  27. B. Hills, Trends Food Sci. Technol. 6, 111 (1995). doi:10.1016/S0924-2244(00)88993-1

    Article  CAS  Google Scholar 

  28. R.R. Ruan, P.L. Chen, Water in Foods and Biological Materials: A Nuclear Magnetic Resonance Approach (Technomic Publishing, Lancaster, PA, 1998)

    Google Scholar 

  29. S. Divakar, J. Food Sci. Technol. 53, 469 (1998)

    Google Scholar 

  30. T.M. Eads, in Spectral Methods in Food Analysis, ed. by M.M. Mossoba (Marcel Dekker, Inc., New York, NY, 1999), p. 1

    Google Scholar 

  31. I.J. Colquhoun, B.J. Goodfellow, in Spectroscopic Techniques for Food Analysis, ed. by R.H. Wilson (VCH Publishers, Inc., New York, NY, 1999), p. 87

    Google Scholar 

  32. J.A.G. Roach, in Spectral Methods in Food Analysis, ed. by M.M. Mossoba (Marcel Dekker, Inc., New York, NY, 1999), p. 159

    Google Scholar 

  33. S.M. Musser, in Spectral Methods in Food Analysis, ed. by M.M. Mossoba (Marcel Dekker, Inc., New York, NY, 1999), p. 251

    Google Scholar 

  34. F.A. Mellon, in Spectroscopic Techniques for Food Analysis, ed. by R.H. Wilson (VCH Publishers, Inc., New York, NY, 1999), p. 181

    Google Scholar 

  35. G. Downey, Research Report No. 14 (The National Food Centre, Dublin, 1999)

    Google Scholar 

  36. H. Huang, H. Yu, H. Xu, Y. Ying, J. Food Eng. 87, 303 (2008)

    CAS  Google Scholar 

  37. G. Downey, Trends Anal. Chem. 17, 418 (1998). doi:10.1016/S0165-9936(98)00042-9

    Article  CAS  Google Scholar 

  38. J. Sádecká, J. Tóthová, J. Czech, Food Sci. 25, 159 (2007)

    Google Scholar 

  39. W.J. Hurst, in Spectroscopic Techniques for Food Analysis, ed. by R.H. Wilson (VCH Publishers, Inc., New York, NY, 1999), p. 221

    Google Scholar 

  40. J. Chen, X.Z. Wang, J. Chem. Inf. Comput. Sci. 41, 992 (2001). doi:10.1021/ci0004053

    CAS  Google Scholar 

  41. W.F. McClure, in Spectroscopic Techniques for Food Analysis, ed. by R.H. Wilson (VCH Publishers, Inc., New York, NY, 1999), p. 13

    Google Scholar 

Download references

Acknowledgement

Authors thank the Canada Research Chairs Program for partial funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digvir S. Jayas.

Additional information

Meeting presentation: Food Processing Automation Conference, Providence, RI, 28–29 June 2008. ASABE Publication Number 701P0508 cd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, P.K., Jayas, D.S. Use of spectroscopic data for automation in food processing industry. Sens. & Instrumen. Food Qual. 3, 3–11 (2009). https://doi.org/10.1007/s11694-008-9068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-008-9068-7

Keywords

Navigation