Skip to main content

Advertisement

Log in

Do Geographic Range Sizes Evolve Faster in Endotherms?

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Changes in geographical distributions underlie a variety of fundamental ecological and evolutionary processes, from allopatric speciation to local extinction. However, little is known about general principles governing the evolution of range sizes at macroevolutionary scales. In this study we measure rates of geographical range size and position in a large-scale dataset of nearly 20,000 species including mammals, birds, squamates and anurans to test three predictions regarding the relationship between endothermy and geographical range evolution, namely whether endotherms show (1) larger geographical ranges; (2) faster rates of range size evolution; and (3) faster changes in the geographical position of their ranges. We found evidence in favor of all of these predictions, suggesting that the evolution of endothermy was associated with a fundamental change in the tempo of range evolution in terrestrial vertebrates. These results are consistent with two previously hypothesized relationships between range size and metabolic rate: the thermal plasticity hypothesis, which suggests that high metabolic rate increases thermal tolerance, and the energy constraint hypothesis, which posits that due to the higher, sustained levels of energy requirements, individuals with high metabolic rates would necessitate to forage farther and to space themselves more broadly, which would result in lower population densities, larger home ranges and ultimately larger range sizes. On the other hand, there was substantial variation in rates of range size evolution among the studied taxa that cannot be explained by the evolution of endothermy alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All analyses were based on publicly available data.

Code Availability

There was no custom code. All used functions and packages are indicated in the text.

References

  • Agosta, S. J., Bernardo, J., Ceballos, G., & Steele, M. A. (2013). A macrophysiological analysis of energetic constraints on geographic range size in mammals. PLoS ONE, 8(9), e72731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angilletta, M. J., Cooper, B. S., Schuler, M. S., & Boyles, J. G. (2010). The evolution of thermal physiology in endotherms. Frontiers in Bioscience, 2, 861–881.

    Google Scholar 

  • Aragón, P., Lobo, J. M., Olalla-Tárraga, M. Á., & Rodríguez, M. Á. (2010). The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecology and Biogeography, 19(1), 40–49.

    Article  Google Scholar 

  • Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219.

    Article  PubMed  Google Scholar 

  • Baselga, A., Lobo, J. M., Svenning, J. C., & Araújo, M. B. (2012). Global patterns in the shape of species geographical ranges reveal range determinants. Journal of Biogeography, 39(4), 760–771.

    Article  Google Scholar 

  • Bennett, A. F., & Nagy, K. A. (1977). Energy-expenditure in free-ranging lizards. Ecology, 58, 697–700.

    Article  Google Scholar 

  • Brown, J. H. (1995). Macroecology. . University of Chicago Press.

  • Brown, J. H., & Maurer, B. A. (1989). Macroecology: The division of food and space among species on continents. Science, 243, 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. H., Stevens, G. C., & Kaufman, D. M. (1996). The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics, 27, 597–623.

    Article  Google Scholar 

  • Buckley, L. B., Hurlbert, A. H., & Jetz, W. (2012). Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 21(9), 873–885.

    Article  Google Scholar 

  • Camacho, A., Recoder, R., Teixeira, M., Jr., Kohlsdorf, T., Rodrigues, M. T., & Lee, M. Y. S. (2017). Overcoming phylogenetic and geographic uncertainties to test for correlates of range size evolution in gymnophthalmid lizards. Ecography, 40(6), 764–773.

    Article  Google Scholar 

  • Castro-Insua, A., Gómez-Rodríguez, C., Svenning, J. C., & Baselga, A. (2018). A new macroecological pattern: The latitudinal gradient in species range shape. Global Ecology and Biogeography, 27(3), 357–367.

    Article  Google Scholar 

  • Courchamp, F., Fournier, A., Bellard, C., Bertelsmeier, C., Bonnaud, E., Jeschke, J. M., & Russell, J. C. (2017). Invasion biology: Specific problems and possible solutions. Trends in Ecology & Evolution, 32(1), 13–22.

    Article  Google Scholar 

  • Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668–6672.

    Article  CAS  Google Scholar 

  • Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467(7316), 704–706.

    Article  CAS  PubMed  Google Scholar 

  • Garnier, S. (2018). Viridis: Default color maps from 'matplotlib'. R package version 0.5.1. Retrieved March 2020, from https://CRAN.R-project.org/package=viridis.

  • Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 219–230.

    Article  Google Scholar 

  • Gaston, K. J., Blackburn, T. M., & Spicer, J. I. (1998). Rapoport’s rule: Time for an epitaph? Trends in Ecology & Evolution, 13(2), 70–74.

    Article  CAS  Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology. (pp. 82–115). Freeman, Cooper and Cy.

  • Grossenbacher, D., Runquist, R. B., Goldberg, E. E., & Brandvain, Y. (2015). Geographic range size is predicted by plant mating system. Ecology Letter, 18(7), 706–713.

    Article  Google Scholar 

  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1442), 183–195.

    Article  CAS  Google Scholar 

  • Hijmans, R. J. (2019). Geosphere: Spherical trigonometry. R package version 1.5-10. Retrieved June 20, 2020, from https://CRAN.R-project.org/package=geosphere.

  • Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. Biology of the Reptilia, 12, 25–91.

    Google Scholar 

  • Isaac, N. J., Mallet, J., & Mace, G. M. (2004). Taxonomic inflation: Its influence on macroecology and conservation. Trends in Ecology & Evolution, 19(9), 464–469.

    Article  Google Scholar 

  • IUCN. (2018). The IUCN Red List of Threatened Species. Version 2018-2. https://www.iucnredlist.org.

  • Jablonski, D. (2008). Species selection: Theory and data. Annual Review of Ecology Evolution and Systematics, 39, 501–524.

    Article  Google Scholar 

  • Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature ecology & evolution, 2(5), 850–858.

    Article  Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Levesque, D. L., Nowack, J., & Stawski, C. (2016). Modelling mammalian energetics: The heterothermy problem. Climate Change Responses, 3(1), 1–11.

    Article  Google Scholar 

  • Newsome, T. M., Wolf, C., Nimmo, D. G., Kopf, R. K., Ritchie, E. G., Smith, F. A., & Ripple, W. J. (2020). Constraints on vertebrate range size predict extinction risk. Global Ecology and Biogeography, 29(1), 76–86.

    Article  Google Scholar 

  • Novosolov, M., Rodda, G. H., North, A. C., Butchart, S. H., Tallowin, O. J., Gainsbury, A. M., & Meiri, S. (2017). Population density—range size relationship revisited. Global Ecology and Biogeography, 26(10), 1088–1097.

    Article  Google Scholar 

  • Nowakowski, A. J., Frishkoff, L. O., Agha, M., Todd, B. D., & Scheffers, B. R. (2018). Changing thermal landscapes: Merging climate science and landscape ecology through thermal biology. Current Landscape Ecology Reports, 3(4), 57–72.

    Article  Google Scholar 

  • Olalla-Tárraga, M. Á., Amado, T. F., Bini, L. M., Martínez, P. A., Morales-Castilla, I., Torres-Romero, E. J., & Villalobos, F. (2019). Biological traits, phylogeny and human footprint signatures on the geographical range size of passerines (order Passeriformes) worldwide. Global Ecology and Biogeography, 28(8), 1183–1194.

    Google Scholar 

  • O’Meara, B. C., Ané, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution, 60(5), 922–933.

    PubMed  Google Scholar 

  • Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., & Harmon, L. J. (2014). Geiger v2. 0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30(15), 2216–2218.

    Article  CAS  PubMed  Google Scholar 

  • Pennell, M. W., FitzJohn, R. G., Cornwell, W. K., & Harmon, L. J. (2015). Model adequacy and the macroevolution of angiosperm functional traits. The American Naturalist, 186, E33–E50.

    Article  PubMed  Google Scholar 

  • Pfrender, M. E., Bradshaw, W. E., & Kleckner, C. A. (1998). Patterns in the geographical range sizes of ectotherms in North America. Oecologia, 115(3), 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Pie, M. R., Campos, L. L. F., Meyer, A. L. S., & Duran, A. (2017). The evolution of climatic niches in squamate reptiles. Proceedings of the Royal Society B: Biological Sciences, 284, 20170268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pie, M. R., & Meyer, A. L. (2017). The evolution of range sizes in mammals and squamates: Heritability and differential evolutionary rates for low-and high-latitude limits. Evolutionary Biology, 44(3), 347–355.

    Article  Google Scholar 

  • Pough, F. H. (1980). The advantages of ectothermy for tetrapods. The American Naturalist, 115(1), 92–112.

    Article  Google Scholar 

  • Pyron, M. (1999). Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal of Biogeography, 26(3), 549–558.

    Article  Google Scholar 

  • QGIS Development Team. (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Rolland, J., Silvestro, D., Schluter, D., Guisan, A., Broennimann, O., & Salamin, N. (2018). The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology & Evolution, 2(3), 459–464.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. . Cambridge University Press.

  • Schlachter, K. L. (2010). Range shape and range elongation of North American trees. Physical Geography, 31(1), 40–57.

    Article  Google Scholar 

  • Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4(11), 1–13.

    Google Scholar 

  • Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16(8), 1104–1114.

    Article  PubMed  Google Scholar 

  • Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133(2), 240–256.

    Article  Google Scholar 

  • Tales, E., Keith, P., & Oberdorff, T. (2004). Density-range size relationships in French riverine fishes. Oecologia, 138(3), 360–370.

    Article  PubMed  Google Scholar 

  • Tamburello, N., Côté, I. M., & Dulvy, N. K. (2015). Energy and the scaling of animal space use. The American Naturalist, 186(2), 196–211.

    Article  PubMed  Google Scholar 

  • Taylor, C. M., & Gotelli, N. J. (1994). The macroecology of Cyprinella: Correlates of phylogeny, body size, and geographical range. The American Naturalist, 144(4), 549–569.

    Article  Google Scholar 

  • Todd, B. D., & Nowakowski, A. J. (2021). Ectothermy and the macroecology of home range scaling in snakes. Global Ecology and Biogeography, 30(1), 262–276.

    Article  Google Scholar 

  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. (2016). Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, 23–31.

    Article  Google Scholar 

  • Upham, N. S., Esselstyn, J. A., & Jetz, W. (2019). Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology, 17(12), e3000494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F., Groen, T. A., Wang, T., Skidmore, A. K., Huang, J., & Ma, K. (2017). Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. International Journal of Geographical Information Science, 31(1), 190–212.

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Fenker, F.C.M.B. Domingos and two anonymous reviewers for valuable comments on the manuscript

Funding

MRP was funded by a research fellowship from CNPq (Grant #302904/2020-4). RD was funded through a graduate scholarship from the CAPES (Grant 88887.351866/2019-00). This study was carried out in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (Proc. 465610/2014-5) and FAPEG (Proc. 201810267000023).

Author information

Authors and Affiliations

Authors

Contributions

MRP designed the study; RD and FSC collected the data; MRP, RD, and FSC analyzed the data; MRP led the writing.

Corresponding author

Correspondence to Marcio R. Pie.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (EPS 71 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pie, M.R., Divieso, R. & Caron, F.S. Do Geographic Range Sizes Evolve Faster in Endotherms?. Evol Biol 48, 286–292 (2021). https://doi.org/10.1007/s11692-021-09537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-021-09537-x

Keywords

Navigation