Skip to main content
Log in

Adaptive Significance and Long-Term Survival of Asexual Lineages

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal, A. F. (2009). Differences between selection on sex versus recombination in red queen models with diploid hosts. Evolution, 63, 2131–2141.

    Article  PubMed  Google Scholar 

  • Angers, B., & Schlosser, I. J. (2007). The origin of Phoxinus eos-neogaeus unisexual hybrids. Molecular Ecology, 16, 4562–4571.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova, I., & Meselson, M. (2004). Deleterious transposable elements and the extinction of asexuals. BioEssays, 27, 76–85.

    Article  CAS  Google Scholar 

  • Arnold, M. L. (1996). Natural hybridization and evolution. New York: Oxford University Press.

    Google Scholar 

  • Baker, H. G., & Stebbins, G. I. (1965). The genetics of colonizing species. New York: Academic Press.

    Google Scholar 

  • Barraclough, T. G., Birky, C. W., Jr, & Burt, A. (2003). Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172.

    PubMed  Google Scholar 

  • Barton, N. H., & Charlesworth, B. (1998). Why sex and recombination? Science, 281, 1986–1990.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. (1993). The sexual nature of eukaryote genomes. Journal of Heredity, 84, 351–359.

    CAS  PubMed  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F. A., & Michod, R. E. (1984). Origin of sex. Journal of Theoretical of Biology, 110, 323–351.

    Article  CAS  Google Scholar 

  • Beukeboom, L., & Vrijenhoek, R. C. (1998). Evolutionary genetics and ecology of sperm-dependent parthenogenesis. Journal of Evolutionary Biology, 11, 755–782.

    Article  Google Scholar 

  • Birky, W. C., Jr. (2004). Bdelloid rotifer revisited. Proceedings of the National Academy of Sciences USA, 101, 2651–2652.

    Article  CAS  Google Scholar 

  • Bjork, A., & Pitnik, S. (2006). Intensity of sexual selection along the anisogamy-isogamy continuum. Nature, 441, 742–745.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S. G., Kwan, S., & Shero, S. (1995). The parasitic theory of sexual reproduction, parasitism in unisexual and bisexual geckos. Proceedings of the Royal Society of London B, 260, 317–320.

    Article  Google Scholar 

  • Bruvo, R., Adolfsson, S., Symonova, R., Lamatsch, D. K., Schön, I., Jokela, J., et al. (2011). Few parasites, and no evidence for Wolbachia infections in a freshwater ostracod inhabiting temporary ponds. Biological Journal of the Linnaean Society of London, 102, 208–216.

    Article  Google Scholar 

  • Butlin, R. (2002). The costs and benefits of sex, new insights from old asexual lineages. Nature Reviews of Genetics, 3, 311–317.

    Article  CAS  Google Scholar 

  • Butlin, R. K., & Griffiths, H. I. (1993). Ageing without sex? Nature, 364, 680.

    Article  Google Scholar 

  • Carman, J. G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biological Journal of the Linnaean Society of London, 61, 51–94.

    Article  Google Scholar 

  • Carman, J. G. (2007). Do duplicate genes cause apomixes? In E. Hörandl, U. Grossniklaus, P. J. van Dijk, & T. F. Sharbel (Eds.), Apomixis, evolution, mechanisms and perspectives (pp. 63–91). Liechtenstein: Gantner Rugell.

    Google Scholar 

  • Cavalier-Smith, T. (2002). Origins of the machinery of recombination and sex. Heredity, 8, 125–141.

    Article  Google Scholar 

  • Chaplin, J. A., Havel, J. E., & Hebert, P. D. N. (1994). Sex and ostracods. Trends in Ecology & Evolution, 9, 435–439.

    Article  CAS  Google Scholar 

  • Christin, P. A., Edwards, E. J., Besnard, G., Boxall, S. F., Gregory, R., Kellogg, E. A., et al. (2012). Adaptive evolution of C4 Photosynthesis through recurrent lateral gene transfer. Current Biology, 22, 445–449.

    Article  CAS  PubMed  Google Scholar 

  • Clay, K., & Kover, P. X. (1996). The Red Queen hypothesis and plant/pathogen interactions. Annuals Reviews of Phytopathology, 34, 29–50.

    Article  CAS  Google Scholar 

  • Cooper, T. F. (2007). Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biology, 59, e225.

    Article  CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (1993). Further evidence against meiotic-drive models of hybrid sterility. Evolution, 47, 685–687.

    Article  Google Scholar 

  • Crews, D. (2012). The (bi)sexual brain. EMBO Reports, 13, 779–784.

    Article  CAS  PubMed  Google Scholar 

  • Crews, D., & Bull, J. J. (2009). Mode and tempo in environmental sex determination in vertebrates. Seminar Cell Development Biology, 20, 251–255.

    Article  Google Scholar 

  • Crews, D., Grassman, M., & Lindzey, J. (1986). Behavioral facilitation of reproduction in sexual and unisexual whiptail lizards. Proceedings of the National Academy of Sciences USA, 83, 9547–9550.

    Article  CAS  Google Scholar 

  • Cullum, A. (2000). Phenotypic variability of physiological traits in populations of sexual and asexual whiptail lizards (genus Cnemidophorus). Evolutionary Ecology Research, 2, 841–855.

    Google Scholar 

  • Czárán, T. L., & Hoesktra, R. F. (2004). Evolution of sexual asymmetry. BMC Evolutionary Biology, 4, 34.

    Article  PubMed  Google Scholar 

  • de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences USA, 102, 6600–6607.

    Article  CAS  Google Scholar 

  • de Visser, J. A. G. M., & Elena, S. F. (2007). The evolution of sex: Empirical insights into the roles of epistasis and drift. Nature Reviews of Genetics, 8, 139–149.

    Article  CAS  Google Scholar 

  • Domes, K., Norton, R. A., Maraun, M., & Scheu, S. (2007). Revolution of sexuality breaks Dollo’s law. Proceedings of the National Academy of Sciences USA, 104, 7139–7144.

    Article  CAS  Google Scholar 

  • Dujardin, M., & Hanna, W. W. (1989). Developing apomictic pearl millet characterization of a BC3 plant. Journal of Genetic Breeding, 43, 145–151.

    Google Scholar 

  • Dunthorn, M., & Katz, L. (2010). Secretive ciliates and putative asexuality in microbial eukaryotes. Trends in Microbiology, 18, 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Dyer, P. S., & Paoletti, M. (2005). Reproduction in Aspergillus fumigatus, sexuality in a supposedly asexual species? Medical Mycology Supplement, 43, S7–S14.

    Article  CAS  Google Scholar 

  • Egel, R. (2000). Fission yeast on the brink of meiosis. BioEssays, 22, 854–860.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics, 78, 737–756.

    CAS  PubMed  Google Scholar 

  • Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., et al. (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology, 5, e87.

    Article  PubMed  CAS  Google Scholar 

  • Genner, M. J., & Turner, G. F. (2012). Ancient hybridization and phenotypic novelty within Lake Malawi’s Cichlid fish radiation. Molecular Biology and Evolution, 29, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli, F., Milani, L., Scali, V., & Passamonti, M. (2007). The Leptynia hispanica species complex (Insecta Phasmida), polyploidy, parthenogenesis, hybridization and more. Molecular Ecology, 16, 4256–4268.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, C., Hernandez, S. S., Flores-Benabib, J., Smith, E. N., & Feschotte, C. (2012). Rampant horizontal transfer of SPIN transposons in Squamate Reptiles. Molecular Biology and Evolution, 29, 503–515.

    Article  CAS  PubMed  Google Scholar 

  • Goddard, M. R., Godfray, H. C. J., & Burt, A. (2005). Sex increases the efficacy of natural selection in experimental yeast populations. Nature, 434, 636–640.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, E. E., & Igic, B. (2008). On phylogenetic tests of irreversible evolution. Evolution, 62, 2727–2741.

    Article  PubMed  Google Scholar 

  • Guillon, J. M., & Raquin, C. (2002). Environmental sex determination in the genus Equisetum: Sugars induce male sex expression in cultured gametophytes. International Journal of Plant Science, 163, 825–830.

    Article  CAS  Google Scholar 

  • Haag, C. R., Sakwinska, O., & Ebert, D. (2003). Test of synergistic interactions between infection and inbreeding in Daphnia magna. Evolution, 57, 777–783.

    PubMed  Google Scholar 

  • Hadany, L., & Feldman, M. W. (2005). Evolutionary traction, the cost of adaptation and the evolution of sex. Journal of Evolutionary Biology, 18, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Hakoyama, H., Nishimura, T., Matsubara, N., & Iguchi, K. (2001). Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biological Journal of the Linnaean Society of London, 72, 401–407.

    Article  Google Scholar 

  • Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101–109.

    Article  Google Scholar 

  • Halkett, F., Simon, J.-C., & Balloux, F. (2005). Tackling the population genetics of clonal and partially clonal organisms. Trends in Ecology & Evolution, 20, 194–201.

    Article  Google Scholar 

  • Hamilton, W. D. (1980). Sex versus non-sex versus parasite. Oikos, 35, 282–290.

    Article  Google Scholar 

  • Hamilton, W. D., Axelrod, R., & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences USA, 87, 3566–3573.

    Article  CAS  Google Scholar 

  • Hanley, K. A., Fisher, R. N., & Case, T. J. (1995). Lower mite infestations in an asexual gecko compared with its sexual ancestors. Evolution, 49, 418–426.

    Article  Google Scholar 

  • Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R. A., & Scheu, S. (2007). High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392–402.

    Article  CAS  PubMed  Google Scholar 

  • Henry, L., Schwander, T., & Crespi, B. J. (2012). Deleterious mutation accumulation in asexual Timema stick insects. Molecular Biology and Evolution, 29, 401–408.

    Article  CAS  PubMed  Google Scholar 

  • Hillis, D. M. (2007). Asexual evolution, can species exist without sex? Current Biology, 17, R543–R544.

    Article  CAS  PubMed  Google Scholar 

  • Hörandl, E., Cosendai, A.-C., & Temsch, E. (2008). Understanding the geographic distributions of apomictic plants, a case for a pluralistic approach. Plant Ecology and Diversity, 2, 309–320.

    Article  Google Scholar 

  • Howard, R. S., & Lively, C. M. (1994). Parasitism, mutation accumulation and the maintenance of sex. Nature, 367, 554–557.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. J. (2000). Populations structure, parasitism and survivorship of sexual and asexual autodiploid parthenogenetic Campeloma limum. Evolution, 54, 167–175.

    CAS  PubMed  Google Scholar 

  • Judson, O. P., & Normark, B. B. (1996). Ancient asexual scandals. Trends in Ecology & Evolution, 11, A41–A46.

    Article  Google Scholar 

  • Kearney, M. (2005). Hybridization, glaciation and geographical parthenogenesis. Trends in Ecology & Evolution, 20, 495.

    Article  Google Scholar 

  • Kearney, M., & Shine, R. (2005). Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. Journal of Evolutionary Biology, 18, 609–618.

    Article  CAS  PubMed  Google Scholar 

  • Keightley, P. D., & Eyre-Walker, A. (2000). Deleterious mutations and the evolution of sex. Science, 290, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov, A. S. (1993). Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84, 372–387.

    CAS  PubMed  Google Scholar 

  • Kondrashov, A. S. (1994). The asexual ploidy cycle and the origin of sex. Nature, 370, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Ladle, R. J. (1992). Parasites and sex, catching the red queen. Trends in Ecology & Evolution, 7, 405–408.

    Article  CAS  Google Scholar 

  • Lamatsch, D. K., Lampert, K. P., Fischer, P., Epplen, J. T., Nanda, I., Schmid, M., et al. (2007). Automictic reproduction in interspecific hybrids of poeciliid fish. Current Biology, 17, 1948–1953.

    Article  PubMed  CAS  Google Scholar 

  • Lattorff, H. M. G., Moritz, R. F. A., & Fuchs, S. (2005). A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity, 94, 533–537.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, J. G. (1999). Gene transfer, speciation, and the evolution of bacterial genomes. Current Opinion Microbiology, 2, 519–523.

    Article  CAS  Google Scholar 

  • Lesbarrères, D. (2011). Sex or no sex, reproduction is not the question. BioEssays, 33, 818.

    Article  PubMed  Google Scholar 

  • Lively, C. M. (2009). The maintenance of sex, host–parasite coevolution with density-dependent virulence. Journal of Evolutionary Biology, 22, 2086–2093.

    Article  CAS  PubMed  Google Scholar 

  • Lively, C. M., Craddock, C., & Vrijenhoek, R. C. (1990). Red queen hypothesis supported by parasitism in sexual and clonal fish. Nature, 344, 864–867.

    Article  Google Scholar 

  • Lively, C. M., & Jokela, J. (2002). Temporal and spatial distributions of parasites and sex in a freshwater snail. Evolutionary Ecological Research, 4, 219–226.

    Google Scholar 

  • Lively, C. M., & Lloyd, D. G. (1990). The cost of biparental sex under individual selection. American Naturalist, 135, 489–500.

    Article  Google Scholar 

  • Lodé, T. (2011). Sex is not a solution for reproduction, the libertine bubble theory. BioEssays, 33, 419–422.

    Article  PubMed  Google Scholar 

  • Lodé, T. (2012a). Sex and the origin of genetic exchanges. Trends in Evolutionary Biology, 2012(4), e1.

    Google Scholar 

  • Lodé, T. (2012b). For quite a few chromosomes more: The origin of eukaryotes. Journal of Molecular Biology, 423, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Lodé, T. (2012c). Have sex or not? Lessons from bacteria. Sexual Development, 6, 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Loxdale, H. D., & Lushai, G. (2003). Rapid changes in clonal lines, the death of a ‘sacred cow. Biological Journal of the Linnaean Society, 79, 3–16.

    Article  Google Scholar 

  • Lunt, D. H. (2008). Genetic tests of ancient asexuality in root knot nematodes reveal 536 recent hybrid origins. BMC Evolutionary Biology, 8, 194.

    Article  PubMed  CAS  Google Scholar 

  • Lushai, G., Loxdale, H. D., & Allen, J. A. (2003). The dynamic clonal genome and its adaptive potential. Biological Journal of the Linnaean Society of London, 79, 193–208.

    Article  Google Scholar 

  • Lynch, M. (1984). Destabilizing hybridization, general-purpose genotypes, and geographic parthenogenesis. Quaternary Review of Biology, 59, 257–290.

    Article  Google Scholar 

  • Mable, K. (2007). Sex in the postgenomic era. Trends in Ecology & Evolution, 2, 559–561.

    Article  Google Scholar 

  • Mallet, J. (2007). Hybrid speciation. Nature, 446, 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Marin, I., & Baker, B. S. (1998). The evolutionary dynamics of sex determination. Science, 281, 1990–1994.

    Article  CAS  PubMed  Google Scholar 

  • Mark-Welch, J. L., Mark-Welch, D. B., & Meselson, M. (2004). Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proceedings of the National Academy of Sciences USA, 101, 1618–1621.

    Article  CAS  Google Scholar 

  • Mark-Welch, D., & Meselson, M. (2000). Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science, 288, 1211–1215.

    Article  CAS  PubMed  Google Scholar 

  • Martens, K., Rossetti, G., & Home, D. J. (2003). How ancient are ancient asexuals? Proceedings of the National Academy of Sciences USA, 270, 723–729.

    Google Scholar 

  • Martin, W. F. (2011). Early evolution without a tree of life. Biology Direct, 6, 36.

    Article  PubMed  Google Scholar 

  • Matheos, M., & Vrijenhoek, R. C. (2007). Ancient versus reticulate origin of hemiclonal lineage. Evolution, 56, 985–992.

    Google Scholar 

  • Maynard-Smith, J. (1978). The evolution of sex. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • McDaniel, L. D., Young, E., Delaney, J., Ruhnau, F., Ritchie, K. B., & Paul, J. H. (2010). High frequency of horizontal gene transfer in the oceans. Science, 330, 50.

    Article  CAS  PubMed  Google Scholar 

  • McDermott, S. R., & Noor, M. A. F. (2010). The role of meiotic drive in hybrid male sterility. Philosophical Transactions of the Royal Society B, 365, 1265–1272.

    Article  Google Scholar 

  • Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C., I. I., & Lively, C. M. (2011). Running with the red queen, host-parasite coevolution selects for biparental sex. Science, 333, 216–218.

    Article  CAS  PubMed  Google Scholar 

  • Muller, H. J. (1964). The relation of mutation to mutational advance. Mutation Research, 1, 2–9.

    Article  Google Scholar 

  • Normark, B. B., Judson, O. P., & Moran, N. A. (2003). Genomic signatures of ancient asexual lineages. Biological Journal of the Linnaean Society of London, 79, 69–84.

    Article  Google Scholar 

  • Nygren, A., & Sundberg, P. (2003). Phylogeny and evolution of reproductive modes in Autolytinae Syllidae, Annelida. Molecular Phylogeny and Evolution, 29, 235–249.

    Article  CAS  Google Scholar 

  • Ochman, H., Lerat, E., & Daubin, V. (2005). Examining bacterial species under the specter of gene transfer and exchange. Proceedings of the National Academy of Sciences USA, 102, 6595–6599.

    Article  CAS  Google Scholar 

  • Otto, S. P. (2009). The evolutionary enigma of sex. American Naturalist, 174, S1–S14.

    Article  PubMed  Google Scholar 

  • Pagano, A., Dubois, A., Lesbarrères, D., & Lodé, T. (2003). Frog alien species, a way for genetic invasion? Comptes-Rendus Biologies, 326, 85–92.

    Article  Google Scholar 

  • Pagano, A., Lesbarrères, D., O’hara, R., Crivelli, A., Veith, M., Lodé, T., et al. (2008). Geographical and ecological distributions of frog hemiclones suggest occurrence of both “General Purpose Genotype” and “Frozen Niche Variation” clones. Journal of Zoological Systems in Evolutionary Research, 46, 162–168.

    Article  Google Scholar 

  • Pal, C., Macia, M., Oliver, A., Schacher, I., & Buckling, A. (2007). Coevolution with viruses drives the evolution of bacterial mutation rates. Nature, 450, 1079–1081.

    Article  CAS  PubMed  Google Scholar 

  • Parker, E. D, Jr, & Selander, R. K. (1976). The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics, 84, 791–805.

    PubMed  Google Scholar 

  • Parnell, J. J., Rompato, G., Latta IV, L. C., Pfrender, M. E., Van Nostrand, J. D., He, Z., Zhou, J., Andersen, G., Champine, P., Balasubramanian, G., & Weimer, B. C. (2010). Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One, 5, e12919. doi:10.1371/journal.pone.0012919.

  • Passamonti, M., Mantovani, B., & Scali, V. (2004). Phylogeny and karyotype evolution of the Iberian Leptynia attenuata species complex (Insecta Phasmatodea). Molecular Phylogeny and Evolution, 30, 87–96.

    Article  CAS  Google Scholar 

  • Penny, D. (1985). The evolution of meiosis and sexual reproduction. Biological Journal of the Linnaean Society of London, 25, 209–220.

    Article  Google Scholar 

  • Phadnis, N., & Orr, H. A. (2009). A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science, 323, 376–379.

    Article  CAS  PubMed  Google Scholar 

  • Presgraves, D. C. (2007). Speciation genetics, epistasis, conflict and the origin of species. Current Biology, 17, R125–R127.

    Article  CAS  PubMed  Google Scholar 

  • Quarin, C. L., Espinoza, F., Martinez, E. J., Pessino, S. C., & Bovo, O. A. (2001). A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reproduction, 13, 243–249.

    Article  Google Scholar 

  • Ramesh, M. A., Malik, S., & Logsdon, J. M. (2005). A phylogenomic inventory of meiotic genes, evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15, 185–191.

    CAS  PubMed  Google Scholar 

  • Redfield, R. (2001). Do bacteria have sex? Nature Reviews of Genetics, 2, 634–639.

    Article  CAS  Google Scholar 

  • Rice, W. R. (2000). Dangerous liaisons. Proceedings of the National Academy of Sciences USA, 97, 12953–12955.

    Article  CAS  Google Scholar 

  • Rice, W. R. (2002). Experimental tests of the adaptive significance of sexual recombination. Nature Reviews of Genetics, 3, 241–251.

    Article  CAS  Google Scholar 

  • Rieseberg, L., & Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M. T., Weeks, A. R., & Hoffmann, A. A. (2002). Geographic patterns of clonal diversity in the earth mite species Penthaleus major with particular emphasis on species margins. Evolution, 56, 1160–1167.

    PubMed  Google Scholar 

  • Salathé, P., & Ebert, D. (2003). The effects of parasitism and inbreeding on the competitive ability in Daphnia magna, evidence for synergistic epistasis. Journal of Evolutionary Biology, 16, 976–985.

    Article  PubMed  Google Scholar 

  • Schaefer, I., Domes, K., Heethoff, M., Schneider, K., Schön, I., Norton, R. A., et al. (2006). No evidence for the “Meselson effect” in parthenogenetic oribatid mites (Oribatida, Acari). Journal of Evolutionary Biology, 19, 184–193.

    Article  CAS  PubMed  Google Scholar 

  • Schartl, M., Wilde, B., Schlupp, I., & Parzefall, J. (1995). Evolutionary origin of a parthenoform, the Amazon Molly Poecilia formosa, on the basis of a molecular genealogy. Evolution, 49, 827–835.

    Article  CAS  Google Scholar 

  • Schley, D., Doncaster, C., & Slutkin, T. (2004). Population models of sperm-dependent parthenogenesis. Journal of Theoretical Biology, 229, 559–572.

    Article  PubMed  Google Scholar 

  • Schmeller, D. S., O’Hara, R., & Kokko, H. (2005). Male adaptive stupidity, male mating pattern in hybridogenetic frogs. Evolutionary Ecological Research, 7, 1039–1050.

    Google Scholar 

  • Schmidt, B. R. (1993). Are hybridogenetic frogs cyclical parthenogens? Trends in Ecology & Evolution, 8, 271–273.

    Article  CAS  Google Scholar 

  • Schön, I., Butlin, R. K., Griffiths, H. I., & Martens, K. (1998). Slow evolution in an ancient asexual ostracod. Proceedings of the Royal Society of London B, 265, 235–242.

    Article  Google Scholar 

  • Schön, I., & Martens, K. (2003). No slave to sex. Proceedings of the Royal Society of London B, 270, 827–833.

    Article  Google Scholar 

  • Schultz, R. J. (1971). Special adaptive problems associated with unisexual fishes. American Zoologist, 11, 351–360.

    Google Scholar 

  • Schurko, A. M., & Logsdon, J. M, Jr. (2008). Using a meiosis detection toolkit to investigate ancient asexual “scandals”. BioEssays, 30, 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Schwander, T., & Crespi, B. J. (2008). Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution, 63, 84–103.

    Article  PubMed  Google Scholar 

  • Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198–207.

    Article  Google Scholar 

  • Simon, J. C., Delmotte, F., Rispe, C., & Crease, T. (2003). Phylogenetic relationships between parthenogens and their sexual relatives, the possible routes to parthenogenesis in animals. Biological Journal of the Linnaean Society of London, 79, 151–163.

    Article  Google Scholar 

  • Slobodchikoff, C. N., & Daly, H. V. (1971). Systematic and evolutionary implications of parthenogenesis in the Hymenoptera. American Zoologist, 11, 273–282.

    Google Scholar 

  • Smith, R. J., Kamiya, T., & Horne, D. J. (2006). Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda, Crustacea). Proceedings of the National Academy of Sciences USA, 273, 1569–1578.

    Google Scholar 

  • Sun, S., & Heitman, J. (2011). Is sex necessary? BMC Biology, 9, 56.

    Article  PubMed  Google Scholar 

  • Suomalainen, E. (1962). Significance of Parthenogenesis in the Evolution of Insects. Annual Review of Entomology, 7, 349–366.

    Article  Google Scholar 

  • Suomalainen, E., Saura, E., & Lokki, J. (1976). Evolution of parthenogenetic insects. Evolutionary Biology, 9, 209–257.

    Article  Google Scholar 

  • Tobler, M., & Schlupp, I. (2005). Parasites in sexual and asexual mollies Poecilia, Poeciliidae, Teleostei, a case for the Red Queen? Biology Letters, 1, 166–168.

    Article  PubMed  Google Scholar 

  • Uyenoyama, M. K. (1984). On the evolution of parthenogenesis, A genetic representation of the “cost of meiosis”. Evolution, 38, 87–102.

    Article  Google Scholar 

  • Venditti, P. C., Meade, A., & Pagel, M. (2010). Phylogenies reveal new interpretation of speciation and the Red Queen. Nature, 463, 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Vorburger, C. (2001). Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. Journal of Evolutionary Biology, 14, 602–610.

    Article  CAS  Google Scholar 

  • Vorburger, C., Sunnucks, P., & Ward, S. A. (2003). Explaining the coexistence of asexuals with their sexual progenitors, no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid, Myzus persicae. Ecology Letters, 6, 1091–1098.

    Article  Google Scholar 

  • Vos, M. (2009). Why do bacteria engage in homologous recombination? Trends in Microbiology, 17, 226–232.

    Article  CAS  PubMed  Google Scholar 

  • Vrijenhoek, R. C. (1994). Unisexual fish, model systems for studying ecology and evolution. Annual Review of Ecological System, 25, 71–96.

    Article  Google Scholar 

  • Vrijenhoek, R. C. (1998). Animal clones and diversity. Are natural clones generalists or specialists? BioScience, 48, 617–628.

    Article  Google Scholar 

  • Watson, R. A., Weinreich, D. M., & Wakeley, J. (2011). Genomes structure and the benefit of sex. Evolution, 65, 523–536.

    Article  PubMed  Google Scholar 

  • Wenseleers, T., & Van Oystaeyen, A. (2011). Unusual modes of reproduction in social insects: Shedding light on the evolutionary paradox of sex. BioEssays, 33, 927–937.

    Article  PubMed  Google Scholar 

  • Wilkinson, G. S., & Fry, C. L. (2001). Meiotic drive alters sperm competitive ability in stalk-eyed flies. Proceedings of the Royal Society of London B, 268, 2559–2564.

    Article  CAS  Google Scholar 

  • Williams, G. C. (1975). Sex and evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Woolley, S. C., Sakata, J. T., & Crews, D. (2004). Tracing the Evolution of Brain and Behavior Using Two Related Species of Whiptail Lizards: Cnemidophorus uniparens and Cnemidophorus inornatus. Institute for Laboratory Animal Research Journal, 45, 46–53.

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank David Crews and two anonymous referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lodé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodé, T. Adaptive Significance and Long-Term Survival of Asexual Lineages. Evol Biol 40, 450–460 (2013). https://doi.org/10.1007/s11692-012-9219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9219-y

Keywords

Navigation