Skip to main content
Log in

Evolutionary Lability of Integration in Cambrian Ptychoparioid Trilobites

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Phenotypic integration can influence evolutionary rate and direction by channeling variation into few dimensions. The extent to which that channeling serves as a constraint over macroevolutionary timescales is determined in part by the evolutionary lability of phenotypic integration. Evolutionary change in patterns of pleiotropy, potentially reducing that constraint, is thought to be more readily achieved when pleiotropy is structured by variation arising in parallel along different developmental pathways rather than by variation arising from direct interactions within and between those pathways. Herein we test two predictions that follow from that hypothesis: (1) that clades undergoing dramatic diversification are characterized by integration that is weakly influenced by direct interactions; and (2) that the structure of integration arising from direct interactions is more conservative than that arising from parallel variation. We examine integration of the cranidium of two Cambrian ptychoparioid trilobites, Crassifimbra walcotti and Eokochaspis nodosa, comparing them to each other and to a previously studied species, C.? metalaspis. Shape variation is decomposed into components representing variation among individuals and variation due to direct interactions. In all three species, variation among individuals was only weakly influenced by direct interactions, suggesting that integration was unlikely to have been a long-term constraint on the Cambrian diversification of ptychoparioids. Phenotypic integration of E. nodosa is no more similar than expected by chance to either Crassifimbra species, but the component due to direct interactions is more similar than expected by chance to that of C.? metalaspis. Conversely, the two Crassifimbra species are generally similar (although not identical) in phenotypic integration, but markedly differ in their structure of direct interactions. Integration arising from direct interactions was therefore not immune to restructuring over even short evolutionary timescales, and was not always more conservative than that arising from parallel variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Allen, C. E. (2008). The “eyespot” module and eyespots and modules: Development, evolution, and integration of a complex phenotype. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 310B(2), 179–190.

    Article  Google Scholar 

  • Armbruster, W. S., Di Stilio, V. S., Tuxill, J. D., Flores, T. C., & Runk, J. L. V. (1999). Covariance and decoupling of floral and vegetative traits in nine neotropical plants: A re-evaluation in Berg’s correlation pleiades concept. American Journal of Botany, 86(1), 39–55.

    Article  Google Scholar 

  • Auffray, J.-C., Alibert, P., Renaud, S., Orth, A., & Bonhomme, F. (1996). Fluctuating asymmetry in Mus musculus subspecific hybridization: Traditional and procrustes comparative approaches. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics. Nato ASI series, series A: Life science (pp. 275–284). New York: Plenum Press.

    Google Scholar 

  • Badyaev, A. V., & Foresman, K. R. (2000). Extreme environmental change and evolution: Stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. Proceedings of the Royal Society on London, Series B Biological Sciences, 267(1441), 371–377.

    Article  CAS  Google Scholar 

  • Badyaev, A. V., & Foresman, K. R. (2004). Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles. American Naturalist, 163(6), 868–879.

    Article  PubMed  Google Scholar 

  • Breuker, C. J., Gibbs, M., Van Dyck, H., Brakefield, P. M., Klingenberg, C. P., & Van Dongen, S. (2007). Integration of wings and their eyespots in the speckled wood butterfly Pararge aegeria. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 308B(4), 454–463.

    Article  Google Scholar 

  • Breuker, C. J., Patterson, J. S., & Klingenberg, C. P. (2006). A single basis for developmental buffering of Drosophila wing shape. PLoS One, 1, e7.

    Article  PubMed  Google Scholar 

  • Burger, R. (1986). Constraints for the evolution of functionally coupled characters: A nonlinear analysis of a phenotypic model. Evolution, 40, 182–193.

    Article  Google Scholar 

  • Chernoff, B., & Magwene, P. M. (1999). Afterword. Morphological integration: Forty years later. In E. C. Olson & R. L. Miller (Eds.), Morphological integration (pp. 319–353). Chicago: University of Chicago Press.

    Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36(3), 499–516.

    Article  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461–469.

    Article  Google Scholar 

  • Cowley, D. E., & Atchley, W. R. (1990). Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. American Naturalist, 135(2), 242–268.

    Article  Google Scholar 

  • Debat, V., Alibert, P., David, P., Paradis, E., & Auffray, J.-C. (2000). Independence between developmental stability and canalization in the skull of the house mouse. Proceedings of the Royal Society of London Series B: Biological Sciences, 267, 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P., & Hoffmann, A. A. (2006). Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution, 60(12), 2529–2538.

    PubMed  CAS  Google Scholar 

  • Dietz, E. J. (1983). Permutation tests for association between two distance matrices. Systematic Zoology, 32(1), 21–26.

    Article  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. American Naturalist, 175(3), 289–301.

    Article  PubMed  Google Scholar 

  • Edwards, D. (2008). MIM: A program for graphical modeling. Version 3.2.0.7. Hypergraph Software.

  • Foote, M. (1989). Perimeter-based Fourier analysis: A new morphometric method applied to the trilobite cranidium. Journal of Paleontology, 63(6), 880–885.

    Google Scholar 

  • Foote, M. (1990). Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology, 39(4), 371–382.

    Article  Google Scholar 

  • Foote, M. (1991). Morphologic patterns of diversification: Examples from trilobites. Palaeontology, 34(2), 461–485.

    Google Scholar 

  • Foote, M. (1993a). Discordance and concordance between morphological and taxonomic diversity. Paleobiology, 19(2), 185–204.

    Google Scholar 

  • Foote, M. (1993b). Contributions of individual taxa to overall morphological disparity. Paleobiology, 19(4), 403–419.

    Google Scholar 

  • Fortey, R. A. (2001). Trilobite systematics: The last 75 years. Journal of Paleontology, 75(6), 1141–1151.

    Article  Google Scholar 

  • Goswami, A. (2006a). Cranial modularity shifts during mammalian evolution. American Naturalist, 168(2), 270–280.

    Article  PubMed  Google Scholar 

  • Goswami, A. (2006b). Morphological integration in the carnivoran skull. Evolution, 60(1), 169–183.

    PubMed  Google Scholar 

  • Goswami, A. (2007). Phylogeny, diet, and cranial integration in Australodelphian marsupials. PLOS One, 2(10), e995.

    Article  PubMed  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., & Smith, A. G. (Eds.). (2004). A geologic time scale 2004. England: Cambridge University Press.

    Google Scholar 

  • Hallgrímsson, B., Brown, J. J. Y., Ford-Hutchinson, A. F., Sheets, H. D., Zelditch, M. L., & Jirik, F. R. (2006). The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evolution and Development, 8(1), 61–73.

    Article  PubMed  Google Scholar 

  • Hallgrímsson, B., Willmore, K., Dorval, C., & Cooper, D. M. L. (2004). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 302B, 207–225.

    Article  Google Scholar 

  • Herrera, C. M., Cerda, X., Garcia, M. B., Guitian, J., Medrano, M., Rey, P. J., et al. (2002). Floral integration, phenotypic covariance structure and pollinator variation in bumblebee-pollinated Helleborus foetidus. Journal of Evolutionary Biology, 15(1), 108–121.

    Article  Google Scholar 

  • Hughes, N. C. (2003a). Trilobite body patterning and the evolution of arthropod tagmosis. BioEssays, 25(4), 386–395.

    Article  PubMed  Google Scholar 

  • Hughes, N. C. (2003b). Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology, 43, 185–206.

    Article  Google Scholar 

  • Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61(7), 1560–1576.

    Article  PubMed  Google Scholar 

  • Inoue, H., Yuasa-Hashimoto, N., Suzuki, M., & Nagasawa, H. (2008). Structural determination and functional analysis of a soluble matrix protein associated with calcification of the exoskeleton of the crayfish, Procambarus clarkii. Bioscience, Biotechnology, and Biochemistry, 72(10), 2697–2707.

    Article  PubMed  CAS  Google Scholar 

  • Jamniczky, H. A., & Hallgrímsson, B. (2009). A comparison of covariance structure in wild and laboratory muroid crania. Evolution, 63(6), 1540–1556.

    Article  PubMed  Google Scholar 

  • Jernigan, R. W., Culver, D. C., & Fong, D. W. (1994). The dual role of selection and evolutionary history as reflected in genetic correlations. Evolution, 48(3), 587–596.

    Article  Google Scholar 

  • Kingsolver, J. G., & Wiernasz, D. C. (1987). Dissecting correlated characters: Adaptive aspects of phenotypic covariation in melanization pattern of Pieris butterflies. Evolution, 41(3), 491–503.

    Article  Google Scholar 

  • Klingenberg, C. P. (2004). Integration, modules, and development: Molecules to morphology to evolution. In M. Pigliucci & K. A. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 213–230). Oxford: Oxford University Press.

    Google Scholar 

  • Klingenberg, C. P. (2005). Developmental constraints, modules, and evolvability. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 219–247). Burlington, MA: Elsevier Academic Press.

    Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution & Development, 11(4), 405–421.

    Article  Google Scholar 

  • Klingenberg, C. P., Badyaev, A. V., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings. American Naturalist, 157(1), 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56(10), 1909–1920.

    PubMed  Google Scholar 

  • Klingenberg, C. P., Debat, V., & Roff, D. A. (2010). Quantitative genetics of shape in cricket wings: Developmental integration in a functional structure. Evolution, 64, 2935–2951.

    PubMed  Google Scholar 

  • Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution, 52(5), 1363–1375.

    Article  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J.-C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.

    Article  Google Scholar 

  • Klingenberg, C. P., & Zaklan, S. D. (2000). Morphological integration between developmental compartments in the Drosophila wing. Evolution, 54(4), 1273–1285.

    PubMed  CAS  Google Scholar 

  • Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., & Heldmaier, W. (1998). Duration of the early cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35, 329–338.

    Article  Google Scholar 

  • Lawler, R. R. (2008). Morphological integration and natural selection in the postcranium of wild Verreaux’s sifaka (Propithecus verreauxi verreauxi). American Journal of Physical Anthropology, 136, 204–213.

    Article  PubMed  Google Scholar 

  • Leamy, L. (1984). Morphometric studies in inbred and hybrid house mice. 5. Directional and fluctuating asymmetry. American Naturalist, 123, 579–593.

    Article  Google Scholar 

  • Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55(9), 1734–1745.

    PubMed  CAS  Google Scholar 

  • Magwene, P. M. (2009). Statistical methods for studying modularity: A reply to Mitteroecker and Bookstein. Systematic Biology, 58(1), 146–149.

    Article  PubMed  Google Scholar 

  • Makarenkov, V. (2000). T-REX. Version 4.0a1. Available at http://www.labunix.uqam.ca/~makarenv/trex.html.

  • Makarenkov, V., & Legendre, P. (2004). From a phylogenetic tree to a reticulated network. Journal of Computational Biology, 11(1), 195–212.

    Article  PubMed  CAS  Google Scholar 

  • Makarenkov, V., Legendre, P., & Desdevises, Y. (2004). Modelling phylogenetic relationships using reticulated networks. Zoologica Scripta, 33(1), 89–96.

    Article  Google Scholar 

  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–220.

    PubMed  CAS  Google Scholar 

  • Márquez, E. (2007a). SAGE, version 1.03. Available at http://www-personal.umich.edu/~emarquez/morph/index.html.

  • Márquez, E. (2007b). CORIANDIS. Available at http://www-personal.umich.edu/~emarquez/morph/index.html.

  • Márquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62(10), 2688–2708.

    Article  PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in new world monkeys. Evolution, 59, 1128–1142.

    PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2009). Examining modularity via partial correlations: A rejoinder to a comment by Paul Magwene. Systematic Biology, 58(3), 346–348.

    Article  PubMed  Google Scholar 

  • Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.

    Article  Google Scholar 

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Palmer, A. R., & Strobeck, C. (1986). Fluctuating asymmetry—Measurement, analysis, patterns. Annual Review of Ecology and Systematics, 17, 391–421.

    Article  Google Scholar 

  • Polanski, J. M., & Franciscus, R. G. (2006). Patterns of craniofacial integration in extant Homo, Pan, and Gorilla. American Journal of Physical Anthropology, 131(1), 38–49.

    Article  PubMed  Google Scholar 

  • Priester, C., Dillaman, R. M., & Gay, D. M. (2005). Ultrastructure, histochemistry, and mineralization patterns in the ecdysial suture of the blue crab, Callinectes sapidus. Microscopy and Microanalysis, 11, 479–499.

    Article  PubMed  CAS  Google Scholar 

  • Renaud, S., Auffray, J.-C., & Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60, 1701–1717.

    PubMed  Google Scholar 

  • Resser, C. E. (1937). Third contribution to nomenclature of Cambrian trilobites. Smithsonian Miscellaneous Collections, 95(22), 1–29.

    Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Rohlf, F. J. (2009). tpsDig. Version 2.14. Department of Ecology and Evolution, State University of New York. Available at http://life.bio.sunysb.edu.morph/.

  • Santos, M., Iriarte, P. F., & Cespedes, W. (2005). Genetics and geometry of canalization and developmental stability in Drosophila subobscura. BMC Evolutionary Biology, 5, 7.

    Article  PubMed  Google Scholar 

  • Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42(3), 319–345.

    Article  Google Scholar 

  • Schlosser, G., & Wagner, G. P. (Eds.). (2004). Modularity in development and evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50(5), 1766–1774.

    Article  Google Scholar 

  • Shafer, T. H., McCartney, M. A., & Faircloth, L. M. (2006). Identifying exoskeleton proteins in the blue crab from an expressed sequence tag (EST) library. Integrative and Comparative Biology, 46(6), 978–990.

    Article  Google Scholar 

  • Shaw, A. B. (1957). Quantitative trilobite studies II. Measurement of the dorsal shell of non-agnostidean trilobites. Journal of Paleontology, 31(1), 193–207.

    Google Scholar 

  • Sheets, H. D. (2001). Standard6beta. Department of Physics, Canisius College, Buffalo, New York. Available at http://www.canisius.edu/~sheets/morphsoft.html.

  • Sheets, H. D. (2009). SemiLand6. 7th Beta Version. Department of Physics, Canisius College, Buffalo, New York. Available at http://www.canisius.edu/~sheets/morphsoft.html.

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Sniegowski, P. D., & Murphy, H. A. (2006). Evolvability. Current Biology, 16(19), R831–R834.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg, F. A. (2000). Homeotic evolution in Cambrian trilobites. Paleobiology, 26(2), 258–270.

    Article  Google Scholar 

  • Sundberg, F. A. (2004). Cladistic analysis of early-middle Cambrian kochaspid trilobites (Ptychopariida). Journal of Paleontology, 78(5), 920–940.

    Article  Google Scholar 

  • Sundberg, F. A., & McCollum, L. B. (2000). Ptychopariid trilobites of the lower-middle Cambrian boundary interval, Pioche Shale, southeastern Nevada. Journal of Paleontology, 74(4), 604–630.

    Article  Google Scholar 

  • Wagner, G. P. (1988). The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. Journal of Evolutionary Biology, 1, 45–66.

    Article  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50(3), 967–976.

    Article  Google Scholar 

  • Webster, M. (2007). Ontogeny and evolution of the early Cambrian trilobite genus Nephrolenellus (Olenelloidea). Journal of Paleontology, 81(6), 1168–1193.

    Article  Google Scholar 

  • Webster, M. (2011). The structure of cranidial shape variation in three early ptychoparioid trilobite species from the Dyeran-Delamaran (traditional “Lower-Middle” Cambrian) boundary interval of Nevada, U.S.A. Journal of Paleontology, 85(2), 179–225.

    Article  Google Scholar 

  • Webster, M., & Zelditch, M. L. (2011). Modularity of a Cambrian ptychoparioid trilobite cranidium. Evolution & Development, 13(1), 96–109.

    Article  Google Scholar 

  • Whittington, H. B., Chatterton, B. D. E., Speyer, S. E., Fortey, R. A., Owens, R. M., Chang, W. T., et al. (1997). Treatise on invertebrate paleontology. Part O. Arthropoda 1. Trilobita, revised. Volume 1: Introduction, order Agnostida, order Redlichiida. Boulder, CO and Lawrence, KS: Geological Society of America and University of Kansas.

    Google Scholar 

  • Willmore, K. E., Klingenberg, C. P., & Hallgrímsson, B. (2005). The relationship between fluctuating asymmetry and environmental variance in rhesus macaque skulls. Evolution, 59(4), 898–909.

    PubMed  Google Scholar 

  • Young, N. (2004). Modularity and integration in the hominoid scapula. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 302B(3), 226–240.

    Article  Google Scholar 

  • Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration: Influence of developmental and functional relationships on complex trait evolution. Evolution, 60(6), 1291–1299.

    PubMed  Google Scholar 

  • Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59(12), 2691–2704.

    PubMed  Google Scholar 

  • Zelditch, M. L., & Carmichael, A. C. (1989). Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution, 43(4), 814–824.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., Bonett, R. M., & Swiderski, D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10(6), 756–768.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.

    Article  Google Scholar 

Download references

Acknowledgments

H. D. Sheets fixed a bug in the SemiLand software at short notice and provided helpful technical comments regarding size-standardization. Some of the material analyzed herein was collected by A. R. (Pete) Palmer. Assistance to MW in the field was generously provided by N. C. Hughes, R. R. Gaines, L. McCollum, and M. McCollum. Code for performing the bootstrapping procedure was devised by A. Haber as part of her Ph.D. thesis (University of Chicago); her generosity in providing the code is greatly appreciated. We thank two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Webster.

Appendix

Appendix

Phylogenetic Relatedness of the Species

Crassifimbra walcotti is very closely related to Crassifimbra? metalaspis (see comments in Webster 2011), and their coeval stratigraphic occurrence in the uppermost Dyeran suggests very recent common ancestry. (The provisional assignment of the latter species to Crassifimbra [and hence the use of the “?” in the name] reflects the needs for a full systematic revision of that genus and other poorly diagnosed antagmine ptychoparioid genera, as discussed by Webster 2011.) Eokochaspis nodosa occurs in slightly younger sediments (basal bed of the Delamaran). Phylogenetic analysis places E. nodosa as a member of a kochaspid clade separated from the two species of Crassifimbra by nine internal nodes, although branch lengths were very short (Sundberg 2004; Webster 2011; unpublished data). A new species representing the oldest kochaspid (to be described elsewhere) occurs at very low abundance in collections with C.? metalaspis. Phylogenetic analyses and stratigraphic data therefore suggest that E. nodosa shared a last common ancestor with Crassifimbra in the late Dyeran.

Assigning absolute time to these phylogenetic branches is necessarily speculative because the strata sampled here are inappropriate for radiometric dating and there are very few radiometric dates compiled worldwide for strata of this age interval. However, the base of the Delamaran is approximately 510 million years old, and beds from New Brunswick dated as 511 ±1 million years old approximately correlate to the upper Dyeran (Landing et al. 1998; Shergold and Cooper in Gradstein et al. 2004). Given that the oldest known occurrences of C. walcotti, C.? metalaspis, and the kochaspid clade are stratigraphically coeval in the uppermost Dyeran, we infer that (1) there is on the order of just a few tens of thousands to hundreds of thousands of years between the sampled occurrence of the two Crassifimbra species and their last common ancestor; (2) branch length between the last common ancestor of the two Crassifimbra species and the last common ancestor of [Crassifimbra + the kochaspid clade] is also on the order of just a few tens of thousands to hundreds of thousands of years; and (3) there is ≈1 million years separating E. nodosa from its last common ancestor with Crassifimbra. Such estimates are consistent with available phylogenetic and stratigraphic data (Sundberg 2004; Webster 2011; unpublished data), and apply minimal insult to the fidelity of the trilobite fossil record.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, M., Zelditch, M.L. Evolutionary Lability of Integration in Cambrian Ptychoparioid Trilobites. Evol Biol 38, 144–162 (2011). https://doi.org/10.1007/s11692-011-9110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9110-2

Keywords

Navigation