Skip to main content
Log in

Syndrome métabolique : une histoire d’empreinte nutritionnelle et d’épigénétique ?

Metabolic syndrome: nutritional imprinting and epigenetics

  • Dossier Thématique / Thematic File
  • Published:
Obésité

Résumé

L’observation d’un lien entre intensité de croissance périnatale et risque de développer des maladies métaboliques à l’âge adulte a fait émerger la notion dite « d’empreinte métabolique ». La nutrition, pendant les stades précoces de la vie, conditionnerait certaines fonctions métaboliques de façon durable et éventuellement transmissible aux générations suivantes. Les nutriments exerceraient une régulation directe de l’expression du génome par des modifications épigénétiques. Cependant, à ce jour, ces données expérimentales sont obtenues sur des modèles animaux et nécessitent d’être confirmées par des recherches chez l’homme.

Abstract

The concept of metabolic imprinting developed from the observation of a relationship between perinatal growth rate and the risk of late onset metabolic disease. According to this concept, early nutrition could influence a number of key metabolic pathways in the long term, and this influence could even be in some way transmitted to future generations. As demonstrated in animal models, nutrients could act on secondary genomic structure and expression through epigenetic mechanisms. Further studies of human populations are needed to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295: 349–353

    Article  PubMed  CAS  Google Scholar 

  2. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35: 595–601

    Article  PubMed  CAS  Google Scholar 

  3. Barker DJ, Fall CH, (1993) Fetal and infant origins of cardiovascular disease. Arch Dis Child 68: 797–799

    PubMed  CAS  Google Scholar 

  4. Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23: 588S–595S

    PubMed  CAS  Google Scholar 

  5. Barker DJ, Hales CN, Fall CH, et al. (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62–67

    Article  PubMed  CAS  Google Scholar 

  6. Osmond C, Barker DJ (2000) Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 108Suppl 3: 545–553

    Article  PubMed  Google Scholar 

  7. Godfrey KM, Barker DJ (2000) Fetal nutrition and adult disease. Am J Clin Nutr 71: 1344S–1352S

    PubMed  CAS  Google Scholar 

  8. Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69: 179–197

    PubMed  CAS  Google Scholar 

  9. Waterland RA (2006) Epigenetic mechanisms and gastrointestinal development. J Pediatr 149: S137–S142

    Article  PubMed  CAS  Google Scholar 

  10. Persson E, Jansson T (1992) Low birth weight is associated with elevated adult blood pressure in the chronically catheterized guinea-pig. Acta Physiol Scand 145: 195–196

    Article  PubMed  CAS  Google Scholar 

  11. Woodall SM, Johnston BM, Breier BH, et al. (1996) Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res 40: 438–443

    Article  PubMed  CAS  Google Scholar 

  12. Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15: 183–187

    Article  PubMed  CAS  Google Scholar 

  13. Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birth-weight with diabetes and vascular disease. Lancet 353: 1789–1792

    Article  PubMed  CAS  Google Scholar 

  14. Eriksson JG, Forsen TJ, Osmond C, et al. (2003) Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care 26: 3006–3010

    Article  PubMed  Google Scholar 

  15. Petry CJ, Dorling MW, Pawlak DB, et al. (2001) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2: 139–143

    Article  PubMed  CAS  Google Scholar 

  16. Holemans K, Aerts L, Van Assche FA (2003) Lifetime consequences of abnormal fetal pancreatic development. J Physiol 547: 11–20

    Article  PubMed  CAS  Google Scholar 

  17. Ozanne SE, Hales CN (2002) Early programming of glucose-insulin metabolism. Trends Endocrinol Metab 13: 368–373

    Article  PubMed  CAS  Google Scholar 

  18. Ozanne SE, Jensen CB, Tingey KJ, et al. (2005) Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48: 547–552

    Article  PubMed  CAS  Google Scholar 

  19. Stoffers DA, Desai BM, DeLeon DD, et al. (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52: 734–740

    Article  PubMed  CAS  Google Scholar 

  20. Thamotharan M, Garg M, Oak S, et al. (2007) Transgenerational Inheritance of the Insulin Resistant Pheno-type in Embryo-Transferred Intra-Uterine Growth Restricted Adult Female Rat Offspring. Am J Physiol Endocrinol Metab

  21. Langley-Evans SC, Bellinger L, McMullen S, (2005) Animal models of programming: early life influences on appetite and feeding behaviour. Matern Child Nutr 1: 142–148

    Article  PubMed  Google Scholar 

  22. Daenzer M, Ortmann S, Klaus S, et al. (2002) Prenatal high protein exposure decreases energy expenditure and increases adiposity in young rats. J Nutr 132: 142–144

    PubMed  CAS  Google Scholar 

  23. Khan IY, Taylor PD, Dekou V, et al. (2003) Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 41: 168–175

    Article  PubMed  CAS  Google Scholar 

  24. Gambling L, Dunford S, Wallace DI, et al. (2003) Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol 552: 603–610

    Article  PubMed  CAS  Google Scholar 

  25. Beach RS, Gershwin ME, Hurley LS (1982) Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 218: 469–471

    Article  PubMed  CAS  Google Scholar 

  26. Bergel E, Belizan JM (2002) A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. Bjog 109: 540–545

    PubMed  CAS  Google Scholar 

  27. Plagemann A, Heidrich I, Gotz F, et al. (1992) Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol 99: 154–158

    Article  PubMed  CAS  Google Scholar 

  28. Bellinger L, Lilley C, Langley-Evans SC (2004) Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr 92: 513–520

    Article  PubMed  CAS  Google Scholar 

  29. Bellinger L, Sculley DV, Langley-Evans SC (2006) Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes (Lond) 30: 729–738

    Article  CAS  Google Scholar 

  30. Egger G, Liang G, Aparicio A, et al. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463

    Article  PubMed  CAS  Google Scholar 

  31. Turner BM (2002) Cellular memory and the histone code. Cell 111: 285–291

    Article  PubMed  CAS  Google Scholar 

  32. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23: 5293–5300

    Article  PubMed  CAS  Google Scholar 

  33. Wolff GL, Kodell RL, Moore SR, et al. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J 12: 949–957

    PubMed  CAS  Google Scholar 

  34. Dolinoy DC, Weidman JR, Waterland RA, et al. (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114: 567–572

    Article  PubMed  CAS  Google Scholar 

  35. Pham TD, MacLennan NK, Chiu CT, et al. (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285: R962–R970

    PubMed  CAS  Google Scholar 

  36. Fu Q, McKnight RA, Yu X, et al. (2006) Growth retardation alters the epigenetic characteristics of hepatic dual specificity phosphatase 5. Faseb J 20: 2127–2129

    Article  PubMed  CAS  Google Scholar 

  37. MacLennan NK, James SJ, Melnyk S, et al. (2004) Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 18: 43–50

    Article  PubMed  Google Scholar 

  38. Ke X, Lei Q, James SJ, et al. (2006) Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats. Physiol Genomics 25: 16–28

    Article  PubMed  CAS  Google Scholar 

  39. Ingelfinger JR (2004) Pathogenesis of perinatal programming. Curr Opin Nephrol Hypertens 13: 459–464

    Article  PubMed  CAS  Google Scholar 

  40. Lillycrop KA, Phillips ES, Jackson AA, et al. (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135: 1382–1386

    PubMed  CAS  Google Scholar 

  41. Burdge GC, Slater-Jefferies J, Torrens C, et al. (2007) Dietary protein restriction of pregnant rats in the Fo generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97: 435–439

    Article  PubMed  CAS  Google Scholar 

  42. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20: 63–68

    Article  PubMed  CAS  Google Scholar 

  43. Khosla S, Dean W, Brown D, et al. (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64: 918–926

    Article  PubMed  CAS  Google Scholar 

  44. Wu G, Bazer FW, Cudd TA, et al. (2004) Maternal nutrition and fetal development. J Nutr 134: 2169–2172

    PubMed  CAS  Google Scholar 

  45. Waterland RA, Garza C (2002) Early postnatal nutrition determines adult pancreatic glucose-responsive insulin secretion and islet gene expression in rats. J Nutr 132: 357–364

    PubMed  CAS  Google Scholar 

  46. Waterland RA, Jirtle RL (2003) Developmental relaxation of insulin-like growth factor 2 imprinting in kidney is determined by weanling diet. Pediatr Res 53: 5A

    Google Scholar 

  47. Junien C (2005) Epigénomique nutritionnelle du syndrome métabolique. Medecine/Sciences 21: 396–404

    Google Scholar 

  48. Plagge A, Gordon E, Dean W, et al. (2004) The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 36: 818–826

    Article  PubMed  CAS  Google Scholar 

  49. Constancia M, Kelsey G, Reik W (2004) Resourceful imprinting. Nature 432: 53–57

    Article  PubMed  CAS  Google Scholar 

  50. Keverne EB (2001) Genomic imprinting, maternal care, and brain evolution. Horm Behav 40: 146–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Parnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parnet, P., Bolaños-Jimenez, F. & Amarger, V. Syndrome métabolique : une histoire d’empreinte nutritionnelle et d’épigénétique ?. Obes 2, 158–165 (2007). https://doi.org/10.1007/s11690-007-0048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-007-0048-6

Mots clés

Keywords

Navigation