Skip to main content
Log in

Bio-directed Chemical Study of Pleurotus ostreatus Spent Substrate and Its Nematicidal Activity

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

In the present study, the nematicidal activity of the chemical fractionation of the spent substrate of the edible mushroom Pleurotus ostreatus against eggs and L3 larvae of Haemonchus contortus was evaluated.

Methods

The hydroalcoholic extract of the spent substrate was subjected to a bipartition with ethyl acetate giving two fractions: one aqueous (F. Ac) and one organic (F. AcOET). Both fractions were evaluated against eggs and L3 larvae at different concentrations (5, 2.5, 1.25, 0.625 and 0.3125 mg/mL) and 2% methanol, PBS and thiabendazole (5 mg/mL) as controls. Chemical fractionation of F. AcOET was performed in open column chromatography where 76 fractions were obtained and when analyzed by thin layer chromatography (TLC) were grouped into 11 mixtures (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11). These mixtures were evaluated at 10 mg/mL against eggs and L3 larvae. The data obtained were analyzed by ANOVA and a Tukey test in the SAS V9 program.

Results

The results showed that, in the evaluation of F. AcOET and F. Ac, for the inhibition of egg hatching, the highest percentages were 78.80 and 76.89% at 5 mg/mL, respectively. As for the percentage of larval mortality, F. AcOET obtained 60.91 and F. Ac 29.77% at 5 mg/mL. The results of the evaluations of the mixtures showed that mixtures R4, R5 obtained 100 and 95.41% larval mortality and mixtures R6 and R7 presented 100% inhibitory activity of egg hatching, so these were analyzed by gas chromatography mass spectrometry finding compounds such as vanillin, β-sitosterol, ρ-methyl ρ-hydroxycinnamate and ρ-hydroxybenzaldehyde.

Conclusion

The results of the present study demonstrate that the spent substrate of P. ostreatus has potential anthelmintic activity against H. contortus. Moreover, by reusing and taking advantage of this substrate, its environmental pollution effects can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besier RB, Kahn LP, Sargison ND, Van Wyk JA (2016) Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv Parasitol 93:181–238. https://doi.org/10.1016/bs.apar.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  2. Sallé G, Doyle SR, Cortet J, Cabaret J, Berriman M, Holroyd N, Cotton JA (2019) La diversidad global de Haemonchus contortus está conformada por la intervención humana y el clima. Nat Commun 10:4811. https://doi.org/10.1038/s41467-019-12695-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. García-Corredor DJ, Pulido-Medellín MO, Díaz-Anay AM (2016) Uso de hongos nematófagos en el control biológico de nematodos gastrointestinales en ovinos. Revista Logos, Ciencia y Tecnología 7:40–49. https://doi.org/10.22335/rlct.v7i2.236

    Article  Google Scholar 

  4. Fernández P, Haza AI, Morales P (2020) Propiedades funcionales de hongos comestibles. Agro Sur 48:11–24

    Article  Google Scholar 

  5. Gaitán-Hernández R, Salmones D (2008) Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Scientia Horticulturae 118:106–110. https://doi.org/10.1016/j.scienta.2008.05.029

    Article  Google Scholar 

  6. Royse DJ, Sánchez, JE (2017) Producción mundial de setas Pleurotus spp. con énfasis en países iberoamericanos. In: Sánchez, JE, Royse D (eds) La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. El Colegio de la Frontera Sur, Tapachula, pp. 17–25. https://biblioteca.ecosur.mx/cgi-bin/koha/opac-detail.pl?biblionumber=000042166

  7. Pineda-Alegría JA, Sánchez J, González-Cortazar M, Zamilpa A, López-Arellano M, Cuevas-Padilla E, Mendoza-de-Gives P, Aguilar-Marcelino L (2017) The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J Med Food. https://doi.org/10.1089/jmf.2017.0031

    Article  PubMed  Google Scholar 

  8. Cruz-Arévalo J, Sánchez JE, González-Cortázar M, Zamilpa A, Andrade-Gallegos RH, Mendoza-de-Gives P, Aguilar-Marcelino L (2020) Chemical Composition of an anthelmintic fraction of Pleurotus eryngii against eggs and infective larvae (L3) of Haemonchus contortus. Biomed Res Int 2020:4138950. https://doi.org/10.1155/2020/4138950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rinker DL (2017) Spent mushroom substrate uses. Edible Med Mushrooms. https://doi.org/10.1002/9781119149446.ch20

    Article  Google Scholar 

  10. Bermúdez-Savón RC, García-Oduardo N, Mustelier-Palenzuela I, MartínezRamírez O, López-Ferrera Y (2019) Valor agregado del sustrato remanente obtenido en el cultivo de seta comestible-medicinal Pleurotus ostreatus. Tecnología Química 39:553–567

    Google Scholar 

  11. Marques-Ferreira J, Carreira DN, Braga FR, Soares FEF (2019) First report of the nematicidal activity of Flammulina velutipes, its spent mushroom compost and metabolites. 3 Biotech 9:410. https://doi.org/10.1007/s13205-019-1951-x

    Article  Google Scholar 

  12. Valdez-Uriostegui LA, Sánchez-García AD, Zamilpa A, Sánchez JE, González-Garduño R, Mendoza-de-Gives P, Castañeda-Ramírez GS, González-Cortazar M, Aguilar-Marcelino L (2021) In vitro evaluation of hydroalcoholic extracts of mycelium, basidiomata and spent substrate of Pleurotus ostreatus against Haemonchus contortus. Tropical and Subtropical Agroecosystems 24:62. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3272. Accessed 15 Sept 2021

  13. Chan-Pérez JI, Torres-Acosta J, Sandoval-Castro CA, Castañeda-Ramírez GS, Vilarem G, Mathieu C, Hoste H (2017) Susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of polyphenol-rich plants. Part 2: infective L3 larvae. Vet Parasitol 240:11–16. https://doi.org/10.1016/j.vetpar.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  14. Torres-Acosta JFJ, Chan-Pérez I, López-Arellano ME, Rosado-Aguilar JA, Soberanes-Céspedes N, Neri-Orantes S, Alonso-Díaz M, Martínez-Ibáñez F, Osorio-Miranda J, Vargas-Magaña JJ, Encalada-Mena L (2015) Diagnóstico de resistencia a los antiparasitarios en rumiantes. En Técnicas para el diagnóstico de parásitos con importancia en salud pública y veterinaria AMPAVE-CONASA. Chapter 12, pp. 355–403. https://books.google.com.mx/books?id=pTwOxQEACAAJ&dq=T%C3%A9cnicas+para+el+diagn%C3%B3stico+de+par%C3%A1sitos+con+importancia+en+salud+p%C3%BAblica+y+veterinaria.+++rodriguez&hl=es&sa=X&redir_esc=y

  15. Bauer BU, Pomroy WE, Gueydon J, Gannac S, Scott I, Pfister K (2010) Comparison of the FLOTAC technique with the McMaster method and the Baermann technique to determine counts of Dictyocaulus eckerti L1 and strongylid eggs in faeces of red deer (Cervus elaphus). Parasitol Res 107:555–560. https://doi.org/10.1007/s00436-010-1893-z

    Article  PubMed  Google Scholar 

  16. Ministry of Agriculture, Fisheries and Food (MAFF) (1986) Manual of Veterinary Parasitological Laboratory Techniques, ADAS, HMSO, UK

  17. Olmedo-Juárez A, Briones-Robles TI, Zaragoza-Bastida A, Zamilpa A, Ojeda-Ramírez D, Mendoza-de-Gives P, Olivares-Pérez J, Rivero-Pérez N (2019) Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health. Microb Pathog 136:103660. https://doi.org/10.1016/j.micpath.2019.103660

    Article  CAS  PubMed  Google Scholar 

  18. Vargas-Magaña JJ, Torres-Acosta JF, Aguilar-Caballero AJ, Sandoval-Castro CA, Hoste H, Chan-Pérez JA (2014) Anthelmintic activity of acetone-water extracts against Haemonchus contortus eggs: interactions between tannins and other plant secondary compounds. Vet Parasitol 206:322–327. https://doi.org/10.1016/j.vetpar.2014.10.008

    Article  PubMed  Google Scholar 

  19. Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, Devkota HP, Orhan IE, Patra JK, Das G, Anandharamakrishnan C, Gomez-Gomez L, Nabavi SF, Nabavi SM, Atanasov AG (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC, Trends Anal Chem 100:82–102. https://doi.org/10.1016/j.trac.2017.12.018

    Article  CAS  Google Scholar 

  20. Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP (2019) Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S Afr J Bot 120:261–267. https://doi.org/10.1016/j.sajb.2018.07.003

    Article  CAS  Google Scholar 

  21. Finney KN, Changkook R, Sharifi VN, Swithenbank J (2009) The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour Techonology 100:310–315. https://doi.org/10.1016/j.biortech.2008.05.054

    Article  CAS  Google Scholar 

  22. Ishihara A, Goto N, Kikkawa M, Ube N, Ushijima S, Ueno M, Ueno K, Osaki-Oka K (2018) Identification of antifungal compounds in the spent mushroom substrate of Lentinula edodes. J Pestic Sci 43:108–113. https://doi.org/10.1584/jpestics.D17-094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimm D, Wösten HA (2018) Mushroom cultivation in the circular economy. Appl Microb Biotech 102:7795–7803. https://doi.org/10.1007/s00253-018-9226-8

    Article  CAS  Google Scholar 

  24. Colmenares-Cruz S, González-Cortazar M, Castañeda-Ramírez GS, Andrade-Gallegos RH, Sánchez JE, Aguilar-Marcelino L (2021) Nematocidal activity of hydroalcoholic extracts of spent substrate of Pleurotus djamor on L3 larvae of Haemonchus contortus. Vet Parasitol 300:109608. https://doi.org/10.1016/j.vetpar.2021.109608

    Article  CAS  PubMed  Google Scholar 

  25. Rizo-Borrego A, Soca-Pérez M, García-Marrero DE, Fuentes-Castillo A, Giupponi-Cardoso P, Arece-García J, Cepero-Casas L (2019) Actividad acaricida del aceite de las semillas de Jatropha curcas L. en larvas de Rhicipephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae). Pastos y Forrajes 42. http://ref.scielo.org/rb7h7s

  26. Caboni P, Ntalli NG, Aissani N, Cavoski I, Angioni A (2012) Nematicidal activity of (E, E)-2,4 decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J Agric, Food Chem 60:1146–1151. https://doi.org/10.1021/jf2044586

    Article  CAS  PubMed  Google Scholar 

  27. Romero-Cortes T, Pérez-España VH, López-Pérez PA, Rodríguez-Jimenes G, Robles-Olvera VJ, Aparicio-Burgos JE, Cuervo-Parra JA (2019) Antifungal activity of vanilla juice and vanillin against Alternariaalternata. J Food 17:375–383. https://doi.org/10.1080/19476337.2019.1586776

    Article  CAS  Google Scholar 

  28. Pineda-Alegría JA, Sánchez JE, González-Cortázar M, Von Son-de FE, González-Garduño R, Mendoza-de Gives P, Zamilpa A, Aguilar-Marcelino L (2020) In vitro nematocidal activity of commercial fatty acids and β-sitosterol against Haemonchus contortus. J Helminthol. https://doi.org/10.1017/S0022149X20000152

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

To MC. Jesús Antonio Pineda-Alegría for techincal support. This study was part of the master’s degree thesis of Miss Susan Yaracet Páez-León at master’s degree in Natural Resource Management, from the Biological Research Center of the Autonomous University of the State of Morelos, Mexico under the direction of Dr Maura Téllez-Téllez and Dr Liliana Aguilar-Marcelino.

Funding

This study was financed by the CONACYT National Problems project number 9342634372 and MC Susan Yaracet Páez-León received a grant from CONACYT-Mexico: No. 747567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Aguilar-Marcelino.

Ethics declarations

Conflict of interest

The authors hereby declare no conflict of interest.

Ethical approval

The sheep were strictly maintained under the NORMA OFICIAL MEXICANA (Official Rule Number) NOM-051-ZOO-1995 (http:/www.senasica.gob.mx) and to the LEY FEDERAL DE SANIDAD ANIMAL (Federal Law for Animal Health) DOF 16–02-2018 (http://www.diputados.gob.mx/LeyesBiblio/ref/lfsa.htm). These guidelines specify that all the procedures performed in studies involving animals must follow the Federal Law and Official Rule strictly in accordance with the ethical standards of INIFAP. Furthermore, the animal welfare and the unnecessary animal suffering are Good Management Practices policies well established at our institution. Thus, this is to certify that the animals used in the procedures performed for the generation fo results included in the manuscript were handled and treated in accordance with the ethical standards and by strictly following the Federal Law and Official Rule above cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez-León, S.Y., González-Cortazar, M., Sánchez-Vázquez, J.E. et al. Bio-directed Chemical Study of Pleurotus ostreatus Spent Substrate and Its Nematicidal Activity. Acta Parasit. 67, 1603–1611 (2022). https://doi.org/10.1007/s11686-022-00600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00600-x

Keywords

Navigation